Ирина Радунская - Крушение парадоксов
- Название:Крушение парадоксов
- Автор:
- Жанр:
- Издательство:«Молодая гвардия»
- Год:1971
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ирина Радунская - Крушение парадоксов краткое содержание
Мазеры и лазеры сделались не только орудием техники, но и скальпелем науки. Они помогли обнаружить столько неожиданных явлений, что ученым впору ринуться на штурм самых глубинных свойств материи.
В книге рассказывается о работах академиков Николая Геннадиевича Басова и Александра Михайловича Прохорова в этой области.
Крушение парадоксов - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Настоящая наука не терпит таких неопределенных понятий, как «достаточно». В этом случае, конечно, существует вполне определенное расстояние, на котором не составляет труда обнаружить расплывание света поперек пучка. Для него существует даже специальное название — «дифракционная длина». И если размеры отверстия увеличить вдвое, она возрастает в четыре раза.
Дифракционное расширение пучков света не зависит от природы вещества. В пустоте оно таково же, как в любой прозрачной среде. И оно не зависит от интенсивности света. Лазерный луч любой мощности так же подвластен законам Френеля, как свет далеких звезд.
Идея Аскарьяна состояла в том, что под действием мощных лучей лазеров в некоторых веществах должны возникнуть новые процессы, способные преодолеть дифракционное расширение пучков света. В таких веществах мощные пучки света должны бежать не расширяясь, а еще более мощные должны даже сжиматься! Любой из процессов, приводящих к увеличению показателя преломления вещества, по мере возрастания интенсивности света может в конце концов побороть утечку энергии из пучка, вызванную дифракцией.
Около ста лет назад шотландский ученый Джон Керр открыл явление, обнаружить которое хотел еще великий Ломоносов. В одной из своих программ Ломоносов писал: «Надо сделать опыт, будет ли луч света иначе преломляться в наэлектризованном стекле и воде». Этого же безуспешно пытался достичь гений эксперимента Фарадей.
Керр установил, что преломление света в стекле радикально изменяется, если поместить его между обкладками конденсатора, заряженного до высокого напряжения. Можно представить себе радость ученого, обнаружившего то, к чему безуспешно стремились его великие предшественники. Узкий луч света, идущий через стекло, при включении электрического напряжения внезапно расщеплялся на два, расходящихся под углом друг к другу. При выключении напряжения эффект исчезал. Да, в электрическом поле стекло вело себя иначе, чем обычно. Электрическое поле превращало стекло в подобие исландского шпата, кристалла, в котором еще в 1670 году копенгагенский профессор Эразм Бартолин обнаружил расщепление лучей света — двойное лучепреломление.
Тогда это было воспринято чуть ли не как фокус. Позже его наблюдали во многих кристаллах. А затем оказалось, что его можно вызывать искусственно и в тех кристаллах, где оно в обычных условиях не наблюдается, и даже в стекле. Для этого достаточно нажать на них или подвергнуть их неравномерному нагреву. И вот ему, Керру, удалось получить двойное лучепреломление под действием электрического поля!
Но... настоящего ученого отличает прежде всего способность к самокритике. Впрочем, эта способность отличает каждого настоящего человека независимо от его специальности. Керр знал, что двойное лучепреломление в стекле может быть вызвано и электрострикцией — деформацией тел под действием внешнего электрического поля. Подобная деформация, как и простое нажатие, делает свойства стекла зависящими от направления. Значит, необходимо еще убедиться, действительно ли обнаружено новое явление — появление двойного лучепреломления в результате непосредственного влияния электрического поля — или в процессе участвует электрострикция.
Но Керр знал и другое. Электрострикция не способна вызвать двойного лучепреломления в жидкостях. Значит, надо повторить опыт в жидкости. И Керр нашел жидкости, в которых наблюдается этот новый эффект, электрооптический эффект, вошедший в науку под названием явления Керра. Впоследствии Керр обнаружил, что появление двойного лучепреломления в некоторых веществах можно вызвать и при помощи магнитного поля, но это выходит за пределы нашей темы.
Для нас существенно, что электрооптический эффект не сводится к возникновению двойного лучепреломления. Электрическое поле, не только постоянное, как в опытах Керра, но и меняющееся во времени, в том числе и электрическая часть световой волны, приводит к изменению показателя преломления прозрачных тел. Причем показатель преломления увеличивается вместе с ростом интенсивности света. Это один из процессов, способных в соответствии с идеей Аскарьяна привести к компенсации дифракционной расходимости световых пучков.
Аскарьян рассказал о своих соображениях на семинаре по квантовой электронике, происходящем в ФИАНе с участием большинства московских и многих иногородних специалистов, а затем опубликовал свои результаты в известном во всем мире «Журнале экспериментальной и теоретической физики».
Эта небольшая статья отличается столь характерным для Аскарьяна богатством и новизной содержания. В ней показано, что явление имеет не только теоретическое, познавательное значение, но и чисто практическое, очень важное и перспективное. По мнению Аскарьяна, поперечную неоднородность поля интенсивного электромагнитного луча можно по желанию использовать для втягивания электронов и атомов к оси пучка или для выталкивания их наружу и создавать таким способом сжатие или разрежение газа. Можно создать в газе канал для прохода электронов или плазмы. Сделать «пробку» у отверстия, соединяющего сосуды, в которых различны давления газа. Применить для нагрева плазмы, для транспортировки плазмы, для создания плазменных токопроводов. И конечно, для создания волноводов и самофокусировки...
Для многих специалистов, работающих в наиболее сложных областях физики плазмы, это прозвучало так, как если бы обыкновенному смертному сообщили, что теперь можно ходить по морю как посуху.
В 1963 году в тоненькой книжечке журнала «Письма ЖЭТФ» Н.Ф. Пилипецкий и А.Р. Рустамов сообщили о первом экспериментальном наблюдении нового явления — самофокусировке световых лучей. В их опытах были фотографически зарегистрированы тонкие светящиеся нити в жидкостях, через которые проходил предварительно сфокусированный луч рубинового лазера. В наши дни эффект самофокусировки проявляется в большинстве опытов, связанных с прохождением гигантских импульсов света лазеров через жидкости. Эффект можно наблюдать и в газах, и в твердых телах.
Новый эффект требовал и теоретического анализа. Первым рассчитал профиль светового пучка, самоканализирующегося под влиянием высокочастотного эффекта Керра, молодой физик из Горького, теперь уже профессор, В.И. Таланов.
Таланов принадлежит к третьему поколению замечательной советской школы физиков, основанной академиками Мандельштамом и Папалекси. Эта школа прославила нашу страну замечательными трудами и крупнейшими открытиями в области нелинейной теории колебаний, радиофизики, оптики и многих других сфер науки. Ко второму поколению этой школы принадлежат такие выдающиеся ученые, как академики А.А. Андронов и М.А. Леонтович. В ее третье поколение входят академики А.В. Гапонов, В.Л. Гинзбург, а также создатели квантовой электроники академик А.М. Прохоров и академик Н.Г. Басов, начинавший свою научную работу под руководством Прохорова, но бывший первоначально учеником академика И.Е. Тамма, сотрудника Мандельштама.
Читать дальшеИнтервал:
Закладка: