Б Кузнецов - Эйнштейн (Жизнь, Смерть, Бессмертие)
- Название:Эйнштейн (Жизнь, Смерть, Бессмертие)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Б Кузнецов - Эйнштейн (Жизнь, Смерть, Бессмертие) краткое содержание
Эйнштейн (Жизнь, Смерть, Бессмертие) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
На второй ступени - уже не интуитивной, а логической - мыслитель как бы слышит слова, выражающие понятия, или видит написанными эти слова либо математические символы. У Эйнштейна зрительные и моторные образы первоначальной ассоциативной стадии сменялись слуховыми представлениями слов, передающих логические конструкции. На вопрос Адамара о господствующем типе "внутренних слов" Эйнштейн отвечал:
"Зрительные и моторные. На той ступени, когда полностью вступают слова, они в моем случае чисто слуховые. Но они, как уже сказано, включаются только на второй ступени" [3].
3 Einstein. Ideas and Opinions, p. 25-26.
Описанный механизм мышления был, по-видимому, в наибольшей степени приспособлен для конструирования логических цепей, допускающих экспериментальную проверку.
Для Эйнштейна понятия не связаны непосредственно с наблюдениями и могут не обладать непосредственным физическим смыслом. Физический смысл они подчас приобретают в результате сложного и многоступенчатого конструирования других понятий. Но в конце концов логические выводы становятся сопоставимыми с наблюдениями и это придает физический смысл всей цепи рассуждений. Как уже говорилось, логика сочетается при таком конструировании с интуицией. Последняя как бы предвосхищает на каждом этапе физические выводы конструируе
60
мой теории. Каждый раз, когда логический анализ оказывается на распутье, физическая интуиция толкает его к таким дальнейшим шагам, которые делают более близкой экспериментальную проверку. Подобно свету, отражающемуся в сложных системах зеркал так, что путь его требует наименьшего времени, мысль Эйнштейна движется от одного понятия к другому по линии кратчайшего подхода к экспериментальной проверке всей цепи рассуждений, к понятиям, которые допускают такую проверку. При этом Эйнштейн руководствуется физической интуицией. Ее можно было бы назвать "экспериментальной интуицией", имея в виду догадку о наиболее близком пути к эксперименту, позволяющему теории обрести физическую содержательность. Интуицию питало то обстоятельство, что Эйнштейн чувствовал себя в своей стихии в мире понятий и образов экспериментальной физики. Зеркала, отражающие свет, контуры, по которым пробегает ток, жесткие стержни, соединяющие движущиеся части приборов, - все эти образы и понятия обрастали у Эйнштейна множеством зрительных и моторных ассоциаций, были живыми, подвижными, готовыми к новым сочетаниям.
Гений Эйнштейна выражался в способности связывать, сочетать, иногда отождествлять понятия, далеко отстоящие одно от другого. В мозгу мыслителя каждое понятие (на предшествующей стадии - образ) окружено облаком виртуальных связей или полем сил, которые захватывают другие понятия, иногда реконструируют их, связывают с данным понятием, вызывают порождения новых понятий и аннигиляцию некоторых старых. Колоссальная мощность такого облака, напряженность такого поля, радиус действия таких сил - признаки гения.
В конце концов экспериментальная интуиция Эйнштейна стала математической интуицией. Мы встречаемся в его работах с поразительно изящными (т.е. приводящими к большому числу выводов без дополнительных допущений) и мощными приемами. В основе выбора этих математических приемов лежит, как мы увидим, выявление закономерностей, допускающих экспериментальную проверку. Но это появилось позже, когда физическая интуиция уже привела Эйнштейна к новому по сравнению с классической физикой разделению понятий
61
на формальные и физически содержательные, допускающие в принципе сопоставление с наблюдениями. До этого, в Цюрихе, у Эйнштейна не было критериев для выбора той или иной математической дисциплины или проблемы.
"Я видел, - пишет Эйнштейн, - что математика делится на множество специальных областей, и каждая из них может занять всю отпущенную нам короткую жизнь. И я увидел себя в положении Буриданова осла, который не может решить, какую же ему взять охапку сена. Дело было, очевидно, в том, что моя интуиция в области математики была недостаточно сильна, чтобы уверенно отличить основное и важное от остальной учености, без которой еще можно обойтись. Кроме того, и интерес к исследованию природы, несомненно, был сильнее; мне, как студенту, не было еще ясно, что доступ к более глубоким принципиальным проблемам в физике требует тончайших математических методов. Это стало выясняться лишь постепенно, после многих лет самостоятельной научной работы. Конечно, и физика была разделена на специальные области, и каждая из них могла поглотить короткую трудовую жизнь, так и не удовлетворив жажды более глубокого познания. Огромное количество недостаточно увязанных эмпирических фактов действовало и здесь подавляюще. Но здесь я скоро научился выискивать то, что может повести в глубину, и отбрасывать все остальное, все то, что перегружает ум и отвлекает от существенного" [4].
4 Эйнштейн, 4, 264.
Существенным, с точки зрения Эйнштейна, было то, что может послужить материалом или орудием для построения адекватной картины реального мира. В математике подобного критерия у него еще не было. Но уже было неясное, но глубокое представление о том, что в стройной системе геометрических теорем выражается упорядоченность мироздания. Первоначально это представление было элементарным: Эйнштейн думал, что геометрические объекты - псевдонимы реальных тел, что они по своей природе не отличаются от последних. Эйнштейну показалась удивительной ("чудом") возможность чисто логического получения достоверных сведений о наблюдаемых предметах. Позже он понял, что такая возможность исключена.
62
"Хотя это выглядело так, будто путем чистого размышления можно получить достоверные сведения о наблюдаемых предметах, но такое "чудо" было основано на ошибках. Все же тому, кто испытывает это "чудо" в первый раз, кажется удивительным самый факт, что человек способен достигнуть такой степени надежности и чистоты в отвлеченном мышлении, какую нам впервые показали греки в геометрии" [5].
5 Эйнштейн, 4, 262.
Ошибка состояла в следующем. Эйнштейну показалось, что ряд геометрических теорем не требует доказательства, поскольку эти теоремы сводятся к очевидным положениям. Из этих очевидных положений можно вывести другие, уже не очевидные и таким образом получить достоверные сведения о реальных телах без каких-либо наблюдений, чисто логически. Но "очевидность" теорем была основана на том, что фигурирующим в них понятиям приписываются те же связи, которые наблюдаются в природе между реальными телами. Если длина отрезка - это твердый стержень, то все геометрические утверждения, относящиеся к длине отрезка, будут очевидными - пока им соответствуют физические свойства стержня. Мы считаем длину отрезка неизменной при его переносе и склонны рассматривать это утверждение как очевидное, потому что бессознательно сопоставляем геометрические понятия с их физическими прообразами. Но у геометрического понятия может появиться новый физический прообраз. Так и получилось, когда Эйнштейн пришел к теории относительности.
Читать дальшеИнтервал:
Закладка: