Б Кузнецов - Эйнштейн (Жизнь, Смерть, Бессмертие)

Тут можно читать онлайн Б Кузнецов - Эйнштейн (Жизнь, Смерть, Бессмертие) - бесплатно полную версию книги (целиком) без сокращений. Жанр: История. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Эйнштейн (Жизнь, Смерть, Бессмертие)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.78/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Б Кузнецов - Эйнштейн (Жизнь, Смерть, Бессмертие) краткое содержание

Эйнштейн (Жизнь, Смерть, Бессмертие) - описание и краткое содержание, автор Б Кузнецов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Эйнштейн (Жизнь, Смерть, Бессмертие) - читать онлайн бесплатно полную версию (весь текст целиком)

Эйнштейн (Жизнь, Смерть, Бессмертие) - читать книгу онлайн бесплатно, автор Б Кузнецов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

73

ческие свойства реальных тел. Такую равноправность всех точек при выборе начала координат мы называем однородностью окружающего нас пространства. Мы можем теперь сказать, что Коперник, лишивший систему координат, связанную с Землей, ее привилегированного характера, показал однородность мирового пространства. Но при этом мы уже, по существу, утверждаем, что при переходе к иной системе координат (Коперник прикрепил ее к Солнцу) не меняются не только форма и размеры тел, но и их поведение.

Соответственно мы приходим к представлению о равноправности направлений в окружающем нас пространстве - такая равноправность называется изотропностью. Когда древнегреческие мыслители отказались от мысли о падении антиподов с Земли "вниз", т.е. о привилегированном направлении, они, по существу, открыли, что в системе отсчета, где одна из осей направлена "вверх", и в системе отсчета, где эта ось направлена "вниз", не меняются величины, характеризующие не только форму и размеры, но и поведение тел.

Вернемся к геометрическим инвариантам. Как было уже сказано, геометрия, которую проходят в средней школе, основана на допущении: длина отрезка не меняется при его переносе. Эта длина вычисляется с помощью некоторой формулы по заданным координатам концов отрезка. Координаты, как уже говорилось, меняются в зависимости от выбора системы отсчета, но длина отрезка остается неизменной. Она служит инвариантом координатных преобразований. Мы можем представить себе иную формулу, связывающую длину отрезка с координатами его концов. Мы можем изменить и другие основные допущения геометрии и при этом не приходим к противоречиям. Такая возможность избирать различные исходные допущения и не приходить при этом к противоречиям нанесла сильный удар идее априорного пространства.

Кант считал априорными, присущими сознанию, независимыми от опыта соотношения геометрии Евклида. В III в. до н. э. Евклид вывел всю совокупность теорем геометрии из нескольких независимых одна от другой аксиом. Среди последних находился так называемый постулат параллельных, эквивалентный утверждению, что из точки, взятой вне прямой, можно провести только одпу прямую, не пересекающуюся с данной. Из этого постула

74

та выводится равенство суммы углов треугольника двум прямым углам, параллельность перпендикуляров к одной и той же прямой и ряд других теорем. Из него выводится, в частности, формула, позволяющая найти длину отрезка, если заданы координаты его концов.

В 1826 г. Н. И. Лобачевский доказал, что может существовать иная, неевклидова геометрия, отказывающаяся от постулата параллельных. В геометрии Лобачевского через точку, взятую вне прямой, можно провести бесчисленное множество прямых, не пересекающихся с данной. Сумма углов треугольника в геометрии Лобачевского меньше двух прямых углов, перпендикуляры к прямой расходятся. Длина отрезка определяется в ней по координатам концов иначе, чем в геометрии Евклида.

Тридцать лет спустя Бернгард Риман заменил евклидов постулат параллельных утверждением, что через точку, взятую вне прямой, нельзя провести ни одной прямой, не пересекающей данную прямую. Иначе говоря, в геометрии Римана параллельных прямых нет. В геометрии Римана сумма углов треугольника нe равна двум прямым углам, как в геометрии Евклида, и не меньше их, как в геометрии Лобачевского, а больше двух прямых углов. Перпендикуляры к прямой не параллельны и не расходятся; в геометрии Римана они сходятся. Длина отрезка определяется по координатам его концов иначе, чем в геометрии Евклида, и иначе, чем в геометрии Лобачевского.

Эти парадоксальные утверждения геометрии Лобачевского и геометрии Римана приобретают простой и наглядный смысл, если мы нарисуем геометрические фигуры не на плоскости, а на кривой поверхности. Возьмем поверхность сферы. Роль прямых на плоскости здесь будут играть кратчайшие дуги, примером которых могут служить дуги меридианов на поверхности Земли или дуги экватора. Но каждые два меридиана обязательно пересекутся, следовательно, на поверхности сферы нельзя найти параллельные кратчайшие линии. Перпендикуляры к экватору - ими как раз и являются меридианы сходятся в полюсе. Нарисовав на поверхности сферы треугольник, образованный дугой экватора и двумя меридианами, т.е. с вершиной в полюсе, мы убедимся, что сумма углов этого треугольника больше двух прямых углов. Длина кратчайшего отрезка на поверхности сферы определяется иначе, иной формулой, чем длина кратчайшего отрезка на плоскости.

75

Можно найти кривую поверхность, па которой, при замене прямых кратчайшими на этой поверхности кривыми, так называемыми геодезическими линиями, все соотношения подчиняются геометрии Лобачевского: через точку, взятую вне такой линии, можно провести множество геодезических линий, не пересекающихся с данной, сумма углов образованного такими линиями треугольника меньше двух прямых углов, перпендикуляры расходятся и т.д.

Можно заменить переход от евклидовой геометрии к неевклидовой геометрии на плоскости - искривлением этой плоскости.

Но как представить себе неевклидову геометрию в пространстве переход от трехмерной евклидовой геометрии к трехмерной неевклидовой геометрии? Зрительного образа искривления трехмерного пространства мы не находим. Но мы можем считать искривлением трехмерного пространства всякий переход от евклидовых геометрических соотношений в этом пространстве к неевклидовым.

Когда Эйнштейн знакомился с евклидовой и неевклидовой геометрией на лекциях по математике в Цюрихе, он не представлял себе, какие именно геометрические понятия позволят найти и описать новую физическую теорию. Только через много лет он увидел, что интересовавшая его с отрочества проблема относительности движения имеет непосредственное отношение к координатным преобразованиям и кривизне пространства.

Для этого необходимо было придать понятию пространства более широкий смысл.

Эйнштейн подошел к трехмерному пространству и к описывающей его свойства трехмерной евклидовой геометрии с критерием физической содержательности. Существуют ли физические процессы, укладывающиеся в соотношения трехмерной евклидовой геометрии? Классическая физика допускала существование таких процессов. Созданная Эйнштейном теория относительности отрицает их возможность. Она приписывает физическую содержательность четырехмерной геометрии.

Критерии выбора научной теории и основы классической физики

Природа в ее простой истине является более великой и прекрасной, чем любое создание человеческих рук, чем все иллюзии сотворенного духа.

Роберт Майер

В автобиографии 1949 г. Эйнштейн пишет о двух критериях выбора научной теории. Первый критерий - "внешнего оправдания": теория должна согласоваться с опытом. Это требование очевидно. Но применение его затрудняется тем обстоятельством, что теория часто может быть сохранена с помощью добавочных предположений. Второй критерий Эйнштейн указывает несколько неопределенным образом. Это "внутреннее совершенство" теории, ее "естественность", отсутствие произвола при выборе данной теории из числа примерно равноценных теорий.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Б Кузнецов читать все книги автора по порядку

Б Кузнецов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Эйнштейн (Жизнь, Смерть, Бессмертие) отзывы


Отзывы читателей о книге Эйнштейн (Жизнь, Смерть, Бессмертие), автор: Б Кузнецов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x