Григорий Бонгард-Левин - Древнеиндийская цивилизация

Тут можно читать онлайн Григорий Бонгард-Левин - Древнеиндийская цивилизация - бесплатно полную версию книги (целиком) без сокращений. Жанр: История, издательство Наука, Восточная литература, год 1993. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Древнеиндийская цивилизация
  • Автор:
  • Жанр:
  • Издательство:
    Наука, Восточная литература
  • Год:
    1993
  • Город:
    Москва
  • ISBN:
    5-02-017592-7
  • Рейтинг:
    4/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Григорий Бонгард-Левин - Древнеиндийская цивилизация краткое содержание

Древнеиндийская цивилизация - описание и краткое содержание, автор Григорий Бонгард-Левин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге рассказывается о главных аспектах культурного наследия древней Индии — ее философии, религии, литературы, научных знаний, культурных контактов. Работа основана на исследовании оригинальных санскритских и палийских текстов, учтена новейшая научная литература. Книга задумана как научно-популярный очерк и ориентирована не только на специалистов-индологов.

http://fb2.traumlibrary.net

Древнеиндийская цивилизация - читать онлайн бесплатно полную версию (весь текст целиком)

Древнеиндийская цивилизация - читать книгу онлайн бесплатно, автор Григорий Бонгард-Левин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В Мохенджо-Даро были открыты каменные астрономические обсерватории, где, очевидно, жрецы вели свои наблюдения. До нас дошли сделанные из камня цилиндрические кольца, на которых имеются углубления. Вероятно, с помощью таких «календарных колец» выполнялись простейшие астрономические наблюдения, удовлетворявшие требования повседневной практики.

Последующие сведения о математических знаниях индийцев относятся к эпохе вед. Один из разделов ведийской литературы под названием шульва-сутры включает трактаты, связанные с правилами измерений и построений различных жертвенных алтарей. Шульва-сутры (или «правила веревки») сохранились в четырех редакциях — Баудхаяны, Манавы, Апастамбы, Катьяяны.

Широкое распространение в период вед получила десятичная система нумерации, известная еще в эпоху Хараппской цивилизации, была разработана специальная терминология для больших степеней десяти, вплоть до 1053. Эти наименования образовывались с помощью принципов сложения, вычитания, умножения — именно тех принципов, которые позднее стали необходимыми компонентами при создании десятичной позиционной системы счисления. Определения и правила выполнения четырех арифметических действий в ведийской литературе не встречаются, хотя приводятся многочисленные примеры этих операций.

В ведийский период сложились основы арифметики, алгебры, теории чисел, геометрии. Санскритское название арифметики — вьяктаганита — «искусство вычисления с известными величинами». Иногда выполнение вычислений именовали дхуликарма — «работа с пылью», поскольку вычисления производились на счетной доске, покрытой песком или пылью, а то и прямо на земле. Числа писали заостренной палочкой; при выполнении арифметических действий легко было стирать одни результаты и на их месте записывать новые.

Санскритское название алгебры — авьяктаганита — означало «искусство вычисления с неизвестными величинами», а также биджаганита — «основы искусства вычисления», или «искусство вычисления с элементами». Зачатки индийской алгебры можно найти в шульва-сутрах, но она в основном была выражена в геометрической форме — той, которая позднее получила блестящее развитие в греческой науке. Так, геометрический метод преобразования квадрата в прямоугольник, одна из сторон которого задана, эквивалентен решению линейного уравнения с одним неизвестным: ахЧ).

В III–II вв. до н. э. сложилась индийская система обозначения степеней — за пять веков до Диофанта — (III в. н. э.), когда греческая числовая алгебра достигла своей кульминации. В конце ведийской эпохи начала создаваться математическая символика: вторая степень называлась пратхама-варга («первый квадрат»), четвертая — двития-варга («второй квадрат»), восьмая — трития-варга («третий квадрат»); корень второй степени обозначался как пратхама-варга-мула («первый квадратный корень»), корень четвертой степени — двития-варга-мула («второй квадратный корень»). Символами служили первые слоги соответствующих санскритских слов. Следует отметить, что и Диофант, подобно индийским ученым, строил буквенную символику именно для степеней неизвестных; показательно, что и способ образования символов — первые или последние буквы соответствующих терминов — полностью аналогичен индийскому.

Самая ранняя классификация алгебраических уравнений в Индии относится к III в. до н. э.; она составлена в зависимости от степени уравнений — уравнения первой степени, или линейного (яват-тават), квадратного, или второй степени (варга), кубического, или третьей степени (гхана), биквадратного, или четвертой степени (варга-варга). Тогда же даны первые способы решения некоторых типов этих уравнений.

Видное место в индийской математике занимали арифметические и геометрические прогрессии. Некоторые задачи приобрели чрезвычайно широкую популярность — скажем, о награде за изобретение шахмат, сводящаяся к нахождению суммы геометрической прогрессии со знаменателем 2. В «Тайтгирия-самхите» содержатся арифметические прогрессии:! 3, 5… 19; 2, 4, 6… 20; 4, 8, 12… 20; 5, 10, 15… 100; 10, 20, 30…. 100; 19, 29, 39…. 99. В «Панчавимша-брахмане» описывается геометрическая прогрессия со знаменателем 2 и первым членом, равным 12. В «Шатапатха-брахмане» упомянут результат суммирования семи членов арифметической прогрессии с начальным членом 24 и разностью 4. К нахождению этой суммы приводит задача о вычислении числа слогов определенного размера. В джайнской «Кальпа-сутре» дается геометрическая прогрессия 1, 2, 4, 8, 16…. 8192 и ее сумма 16383. Эта профессия играла важную роль не только в математике, но и в стихосложении, когда надлежало вычислить число слогов нужного размера.

Ряд задач на арифметическую и геометрическую прогрессии, аналогичные индийским, содержится в математических руководствах армянского математика Анания Ширакаци (VII в.), итальянца Леонардо Пизанского (XII–XIII вв.), византийского ученого XIV в. Николая Артавазда; они встречаются во многих средневековых западноевропейских руководствах. В «Памятниках минувших поколений» Бируни вычислил сумму 64 членов геометрической прогрессии 1 + 2 + 22 + 24 + … 26, связав ее с индийской легендой о происхождении игры в шахматы.

Немалый интерес индийские ученые проявляли к комбинаторике. Одним из побудительных мотивов к занятию ею послужило ведийское стихосложение, имевшее различные размеры. При создании стихов надо было учитывать не только число слогов, но и долготу гласных звуков в каждой слоговой группе. Это привело к разработке математической теории. Среди ведийских сочинений, посвященных этому вопросу, особого внимания заслуживает трактат «Чханда-сутра» Пингалы (III–II вв. до н. э.).

Самхиты позволяют составить представление и об астрономических знаниях древних индийцев. Здесь встречается упоминание месяца — одной из ранних естественных единиц времени. Он подразделяется на две части: светлую половину (шукла) — до полнолуния и темную (кришна) — от полнолуния до новолуния. Первоначально лунный синодический месяц определялся в 30 дней, потом он был вычислен более точно и составил 29,5 дня. Звездный месяц был больше 27, но меньше 28 дней, что впоследствии отразилось в системе накшатр — 27 или 28 лунных стоянок.

В отличие от вавилонских и древнекитайских астрономов древнеиндийские не составляли звездных каталогов. Для создания календаря, нужного в практических целях, принималось в расчет движение Солнца и Луны. Внимание в основном концентрировалось вокруг тех созвездий, которые лежали вдоль или вблизи эклиптики. Звездная система, служившая для определения пути Солнца и Луны, именовалась системой накшатр.

В «Ригведе», где этот термин употребляется для обозначения и звезд, и лунных стоянок, имеются свидетельства по крайней мере о двух из них: о Магхе и Пхалгуни. Полный список накшатр впервые появляется в «Яджурведе». Названия их остались фактически неизменными на протяжении многих веков.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Григорий Бонгард-Левин читать все книги автора по порядку

Григорий Бонгард-Левин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Древнеиндийская цивилизация отзывы


Отзывы читателей о книге Древнеиндийская цивилизация, автор: Григорий Бонгард-Левин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x