Вячеслав Филин - Воспоминания о Лунном корабле
- Название:Воспоминания о Лунном корабле
- Автор:
- Жанр:
- Издательство:Культура
- Год:1992
- Город:М.
- ISBN:5-7158-0050-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вячеслав Филин - Воспоминания о Лунном корабле краткое содержание
В 60—70-х годах в Советском Союзе велись работы по созданию космического корабля для полета на Луну с космонавтами на борту. Лунный корабль успешно прошел все испытания, однако старт так и не состоялся. О событиях тех лет повествует один из разработчиков Лунного корабля доктор технических наук В. М. Филин.
Издание снабжено уникальными фоторгафиями и рисунками.
Воспоминания о Лунном корабле - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Устойчивыми на плоскости, как учит нас геометрия, являются предметы, имеющие три точки опоры. Такая трехточечная опорная система применена в аппарате «Сервейер». Да, перевернуть такой аппарат через опору сложно. Но как легко кувыркается стол или стул на трех ножках, вы сами можете убедиться. И опрокидывание происходит через линию, проходящую между ножками, она-то наиболее близка к осевой. Если в кольце все точки равно удалены от центра, то для такой же устойчивости (чисто теоретически) в трехопорной схеме требуется примерно в два раза большая база (расстояние между опорами). Вот теперь стали и мы убеждаться, что нужны четыре опоры, ведь по сравнению с кольцом они были по базе хуже только на 30 %. Дальнейшее увеличение числа ног у посадочного устройства уже не приводило к резкому преимуществу по запасам устойчивости.
В четырехопорных вариантах для дальнейших исследований оставили две схемы: классическую, похожую на американскую, и совершенно новую, необычную. Предложил ее А.А.Саркисьян. Надо отдать должное его нестандартному мышлению. Он был непревзойденным новатором всех механических узлов корабля. А схема его была такова. Представьте себе, что все четыре опоры связаны между собой замкнутым тросом, как показано на рисунке 24 (2 — посадочная опора; 3 — сотовые амортизаторы; 4 — замкнутый трос; 5—блок-тормоз).
Пойдет хотя бы одна нога вверх, остальные тут же начнут выдвигаться вниз, как бы встречая опорную поверхность. И как только последняя опора коснется поверхности, начнется повышенная перегрузка и в системе. Тогда срабатывает блок-тормоз, а конечные устройства опор в виде сотовых амортизаторов погасят энергию удара.
Замечательная схема! Все очень просто и заманчиво. Трудно было себе представить, что такой громадный аппарат удержится при резко уменьшенной базе, но расчеты показывали, что при заданных нами условиях он стоит. Молодые инженеры были в восторге от такой схемы. Но наши опытные руководители были более осторожны. Последовали вопросы, на которые нужно было отвечать. А если обрыв троса, отказ тормоза, увеличенные боковые скорости?.. Первые два вопроса были понятными. Сторонники схемы доказывали, что можно сделать с хорошими запасами работоспособности и трос, и тормоз. Нужно было ответить и на третий вопрос. И опять убеждаешься, что все гениальное просто. Все тот же А. А. Саркисьян предложил установить на каркас ЛПУ в районе опор пороховые двигатели, которые на первый взгляд увеличивают скорость встречи с поверхностью, так как их сопла направлены вверх. На самом же деле вопрос был во времени включения. Если их включить до касания, то они увеличат скорость встречи, а если в момент касания? Вот тут и заключалась идея. Двигатели как бы припечатывали аппарат к поверхности и тем самым заранее гасили весь опрокидывающий момент. Мы их так и назвали «двигатели прижатия»: они в конечный момент прилунения прижимают аппарат к поверхности с различным рельефом.
Но самое главное преимущество такой схемы было в том, что она позволяла вертикализировать аппарат при посадке. Если садились на площадку наклоном в 20°, ось аппарата отклонялась от вертикали на несколько градусов.

Рис. 25. Модели активного ЛПУ
Схема получила у нас название активной (рис. 25). Более привычная схема с базой между опорами, в полтора раза превосходящей базу активной схемы, как-то успокаивала глаз. Ни одни, ни другие сторонники той или иной схемы не могли доказать их неоспоримые преимущества. В пассивной схеме ни о какой вертикализации думать не приходилось, а сама схема даже усугубляла положение, а в активной схеме серьезной проблемой было создание оконечных амортизационных устройств, которые должны были гасить и вертикальную, и горизонтальную составляющие. Решили испытать все на моделях. Заказали модели активной и пассивной схемы. Какой выбрать масштаб? Поскольку на Луне сила тяжести примерно в шесть раз меньше земной, такой и приняли масштаб. Стремились выдержать все детали штатного исполнения.
Создание моделей — это целая наука, ведь результаты испытаний нужно потом перенести на натуру. Это хорошо знают аэродинамики, которым не под силу продуть целый самолет. Так и мы мучились над созданием моделей. Вопросов было много. Например, где найти пороховые двигатели малой тяги. Решили сделать так: поскольку равнодействующая всех четырех двигателей прижатия проходила через центральную ось в активной схеме, на эту модель поставили один центральный пороховой двигатель. Позже аналогично поступили и в пассивной схеме.

Рис. 27. Боковой подкос стойки посадочного устройства ЛК (видны сотовые энергогасители и на стойке парирующий двигатель)
Или другой пример. Как гасить энергию в подкосах и стойках (пока на моделях) в пассивной схеме? Придумали специальные фрикционные гасители: зажатые вкладыши терлись о шток и гасили кинетическую энергию. Особо стоял вопрос о гашении энергии в активной схеме. Тут впервые Б.И.Сотников предложил использовать в активной схеме сотовые «башмаки», а в пассивной — сотовые вкладыши в опорах (рис. 27). Мы еще вернемся к ним, когда будем рассказывать об энергопоглотителях в выбранных схемах. Но как эти энергопоглотители применить в «башмаках» активной схемы? По расчетам необходима была очень тонкая фольга. Промышленность такую не выпускала. Предложили производственникам сделать отверстия. Они ответили, что не могут, так как на сверло наматывается фольга. Мы решили обжать исходный материал накладками и просверлить, а потом сформировать «башмак».
Много хлопот было с блоком тормоза и элементами, обеспечивающими его надежную работу. Постепенно определились облики моделей. Модель моделью, но нужно было создавать установку для испытаний с имитацией различных начальных условий движений моделей: скорости боковой и вертикальной, угол встречи с поверхностью (посадка по склону и посадка на склон), положения оси объекта на определенной высоте и лунного грунта. Для создания кинематических условий сделали специальную качалку. Качалка обеспечивала плоско-параллельное движение модели в момент отцепки, что по нашим исследованиям было очень близко к штатной схеме посадки.
Особый вопрос стоял о грунте, на который производился сброс. Вспомним, как спрогнозировал твердость грунта С.П.Королев. Лунный грунт — это что-то, похожее на пемзу. Грунт для укладки в поворотный поддон подбирали особенно тщательно. В горах Армении нашли туф, очень похожий по виду на пемзу, но гораздо мягче. После долгого анализа различных образцов остановились именно на армянском туфе. Туф прислали. Не обошлось без курьезов. В одном из ящиков обнаружили увесистую металлическую чушку. Во вложенной записке прочитали, что положена она для увеличения массы посылки. Зачем? Так и не отгадали, вот уж действительно армянские шутки. Туф получили в виде отдельных небольших плит размерами примерно 300х400 мм. Оставалось теперь сымитировать на поддоне лунный кратер, и установка была готова.
Читать дальшеИнтервал:
Закладка: