Александр Викторович Волков - 100 великих загадок астрономии
- Название:100 великих загадок астрономии
- Автор:
- Жанр:
- Издательство:Литагент Вечеe7ff5b79-012f-102b-9d2a-1f07c3bd69d8
- Год:2012
- Город:Москва
- ISBN:978-5-9533-5531-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Викторович Волков - 100 великих загадок астрономии краткое содержание
С той знаменитой январской ночи 1610 года, когда Галилей навёл свой телескоп на небо и открыл спутники Юпитера, многие учёные и энтузиасты последовали его примеру и открыли немало планет и звёзд, существование которых в настоящее время не подтверждается. И задолго до Галилея необъяснимые явления в космосе ставили в тупик мыслителей и будоражили умы обывателей. Сегодня – в XXI веке, несмотря на то, что современная наука продвинулась далеко вперёд, в астрономии накопилось множество открытий и наблюдений, которые требуют для своего объяснения новых теоретических построений. Все они, на первый взгляд, кажутся чрезвычайно сложными, но, учитывая опыт прошлого, ученые не спешат отступать.
О самых волнующих загадках современной астрономии рассказывает очередная книга серии.
100 великих загадок астрономии - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Планетолог Дэвид Стивенсон из Калифорнийского технологического института считает, что на одиноких планетах размером с нашу Землю вполне может существовать вода в жидком виде, если они окружены водородной атмосферой, сберегающей тепло. «В таком случае температура их поверхности лежит выше точки замерзания воды, и там могут простираться целые океаны», – отмечает он в интервью журналу «Nature». И на таких планетах даже может сохраниться жизнь, полагает Дэвид Беннетт.
Пока астрономам остается лишь строить догадки, ведь имеющаяся в их распоряжении аппаратура практически не позволяет выявить планеты, сравнимые по своим размерам с Землей и тем более Меркурием или Марсом. Как правило, сейчас удается обнаруживать лишь гигантские экзопланеты. Поэтому небольшие небесные тела, блуждающие по просторам космоса вдали от звездных систем, еще долгое время могут оставаться незамеченными.
Очевидно, с появлением космических телескопов нового поколения уже в следующем десятилетии, в начале 2020-х годов, астрономы начнут планомерный поиск планет, отбившихся от своих звезд. А что если и в окрестности Солнца когда-то располагались не только восемь известных нам сегодня больших планет, но и другие планеты, которые не удержались на своих орбитах и покинули Солнечную систему? Этакие «Фаэтоны», полетевшие не к Солнцу, а на огонь далеких звезд?
А кстати, могут ли одинокие планеты перелетать из одной галактики в другую? В 2010 году астрономы обнаружили уникальную планету HIP 13044b. Похоже, она сформировалась за пределами Млечного Пути, отмечают исследователи на страницах журнала «Science». Эта планета весит примерно в 1,25 раза больше, чем Юпитер, и обращается вокруг очень старой звезды HIP 13044, которая уже превратилась в красного гиганта. Обе они – и планета, и звезда – входят в состав карликовой галактики, поглощенной Млечным Путем от 6 до 9 миллиардов лет назад. Так что вместе с подобными галактиками, которые пополнили наш «звездный остров», нам достался и мир их планет. И, скажут оптимисты, инопланетяне их тоже.
Загадки черных дыр
Черные дыры настолько загадочны, что даже Альберт Эйнштейн не верил в то, что их можно отыскать где-то в космической дали. Само их существование, впрочем, следовало из его теории относительности. Однако на протяжении полувека черные дыры считались чем-то вроде блистательной и безответственной игры ума. Результатом математических экзерсисов, которые не имеют отношения к реальности.
В 1916 году немецкий астроном Карл Шварцшильд, анализируя эту теорию, сделал поразительное открытие: на определенном расстоянии от звезды время и пространство… могут меняться ролями. Пространство становится временем, а время – пространством. Во всяком случае, так гласили сухие математические формулы. Эти метаморфозы приключаются лишь со звездами, чей радиус крайне мал. Например, объект, масса которого равна массе Солнца, должен сжаться до радиуса, равного трем километрам, – только тогда он минует эту магическую границу превращений. Для Земли «радиус Шварцшильда» составляет всего 9 миллиметров. Но вряд ли в природе существуют столь крохотные тела, наделенные громадными массами. Этим все и успокоилось. На время.

Существование черных дыр следовало из теории относительности
Между тем было уже известно о существовании необычайно компактных звезд большой массы – «белых карликов». В 1930 году некий молодой человек, Субрахманьян Чандрасекар, путем вычислений установил, что звезды, чья масса не превышает 1,4 массы Солнца, в конце своей жизни превращаются в белых карликов размером с нашу планету. Что касается более массивных звезд, то под действием собственной силы тяжести они вроде бы должны неудержимо сжиматься. Процесс, который и вообразить трудно. Недаром ряд известных ученых высмеял гипотезу индийского студента, который впоследствии стал видным астрофизиком и лауреатом Нобелевской премии.
Однако в 1939 году американский физик Роберт Оппенгеймер вместе со своим учеником Хартлендом Снайдером доказали, что если масса звезды слишком велика, то никакая сила не способна остановить гравитационный коллапс. Идея Чандрасекара подтвердилась. Загадочный объект, полученный Шварцшильдом путем математических выкладок, обрел физический смысл.
Когда звезда сжимается, то в непосредственной близости от нее сила ее притяжения возрастает до невероятной величины. Пространство вокруг такой звезды все сильнее искривляется. Как только ее радиус становится меньше радиуса Шварцшильда, пространство, окружающее ее, смыкается, становится непреодолимым барьером. Никакое излучение, никакие частицы не могут вырваться из этой гравитационной ловушки. Звезда отгораживается от всего мироздания. Она становится невидимой. Как говорят астрофизики, она скрывается за «горизонтом событий», который можно представить себе в виде воображаемой сферы, что окружает «застывшую звезду» – черную дыру, как ее станут именовать впоследствии (это название придумал в 1967 году американский физик Джон Арчибальд Уилер). Радиус горизонта событий никогда не уменьшается. Черная дыра может только расти.
Лишь в 1971 году была обнаружена первая предполагаемая черная дыра – Cygnus X-1 в созвездии Лебедя. В наши дни астрофизики убеждены, что в центральной части большинства галактик нашей Вселенной притаилась громадная черная дыра – словно неумолчное сердце этого многозвездного (многоклеточного, сказал бы мистик) организма. Есть она и в центре Млечного Пути. Но механизм зарождения подобных монстров пока еще не ясен.
Возможно, их зародыши появились уже в первые доли секунды после Большого взрыва. Их масса могла быть очень малой. Быть может, галактики с самого начала формировались вокруг этих неоднородностей? По другой гипотезе, черные дыры возникли в первые сто миллионов лет из случайных колебаний плотности в первородном газе. Быть может, черные дыры и звезды зарождаются практически по одному и тому же сценарию? Молекулярные облака сжимаются под действием гравитационных сил. Малые облака образуют звезды, а большие – громадные черные дыры. А может быть, сверхмассивные черные дыры зарождались в результате коллапса крупных звездных скоплений, возникших посреди галактик? А не образовались ли они при столкновениях первых галактик? Хотя подобные катастрофы все же редки, а количество черных дыр во Вселенной – поразительно велико.
Наблюдается интересная закономерность. Чем больше галактика, тем крупнее черная дыра, притаившаяся посредине, а значит, тем меньше шансов на зарождение новых звезд. Очевидно, черные дыры не позволяют галактикам беспредельно расширяться; они придают им форму – очерчивают их, подобно тому, как черная дыра смерти отчетливо очерчивает личность человека.
Читать дальшеИнтервал:
Закладка: