Антон Фукалов - Корпус наук. Фундаментальные знания

Тут можно читать онлайн Антон Фукалов - Корпус наук. Фундаментальные знания - бесплатно ознакомительный отрывок. Жанр: Языкознание. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Корпус наук. Фундаментальные знания
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785449052865
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Антон Фукалов - Корпус наук. Фундаментальные знания краткое содержание

Корпус наук. Фундаментальные знания - описание и краткое содержание, автор Антон Фукалов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В данной работе рассказывается о трёх фундаментальных науках: математике, физике и лингвистике. Но стиль изложения в книге философский и настраивающий на новые знания, что делает работу привлекательной и интересной для людей.

Корпус наук. Фундаментальные знания - читать онлайн бесплатно ознакомительный отрывок

Корпус наук. Фундаментальные знания - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Антон Фукалов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мною проделана работа по созданию всей таблицы умножения, введению в оборот всех чисел, которые получаются, когда мы умножаем все подчисла всех чисел.

Но есть ещё один очень интересный момент, который заключается в том, что 1-2-3-4-5-6-7-8-9- (1—0) – это десятичная созданная людьми система счисления, а может быть другая система счисления, где на 10 не заканчивается числовой целочисленный ряд.

Это может быть, например, 1-2-3-4-5-6-7-8-9-в-р-1в-2р-3в-4р-5в-6р-7в-8р-9в-вр-в1-р2-в3-р4-в5-р6-в7-р8-в9-рв….и так далее.

В этом направлении надо продолжать работать. Эту систему счисления я предложил как альтернативу, но может быть ещё система счисления, в которой ещё что-то другое, и это будет давать нам совершенно другой взгляд на мир и на вещи.

Получается, что число – это ещё и универсальный не инвариант, то есть не постоянное значение и только фиксируемая величина. Если предположить, что мы живём в мире не десятичного счисления, а цифро-буквенного перебора, как предложил я, то это повлияет и на изучение циклов Земли (астрономия), и на изучение мозга (искусственного интеллекта в частности), и на изучение самой математики, и что самое главное техники, технологий и изобретательства.

Философски значимо здесь то, что может быть иное в математической топологии, которую ввёл Пуанкаре и неоднозначность смыслов.

Математика создаёт что-то для того, чтобы больше познавать мир. Если мы говорим, что математика – это точная наука, то мы говорим правду, но только с той оговоркой, что это наука и потому точные вычисления расширяются, увеличиваются, их много и они постоянно должны аккумулироваться нашими усилиями.

Я убеждён на основании научных изысканий, что наш мозг работает по математическим и геометрическим стратегиям и потому вся математика в нём, и все принципы дифференцирования, к примеру, в геометрии, конечно, а не числе, в веществе гармонично отражены, поэтому любое математическое понятие может быть гуманитарным языком описано, как смысл.

МАТЕМАТИКА и ГЕОМЕТРИЯ прообразования

Задача 1 Обнаружение уплотнений, как они возможны?

Решим такую задачу: дано 2 физических объекта разной формы и два физических объекта одинаковой формы, это диск и треугольник и два квадрата. Нужно вычислить с точки зрения прообразовательной математики как эти объекты влияют друг на друга при нахождении на равном друг от друга расстоянии. Для решения задачи можно применять любые способы и методики вычисления, но пользуясь понятийным языком Прообраза.

Ответ и решение:

Квадраты. У квадратов по четыре угла. Каждый угол направлен своей энергетической силой во все возможные стороны. Всепричинность как понятие о прошлом, настоящем и будущем также в этих предметах прообразует их новые конфигурации в бытии фрагментации. Это неподвластная нам тема. Нам же подвластно решить взаимодействие квадратов на окружающую природу. А оно таково, что они излучают всеми своими четырьмя поверхностями энергию во всех возможных направлениях, одновременно считывая информацию с природы и с человека (ов), если они там находятся.

Квадрат по отношению к квадрату излучает комбинации поверхностей 1—1, 2—2, 3—3, 4—4. Сами поверхности не ровные, так как в природе нет ничего ровного и абсолютно точного и потому они могу излучать следующие комбинации: 0,5- 0,5 или 1,3—1,4, 2—0,1, 3—1,5, 4- (-3). Конфигурации и вариации самые разнообразные и полностью вычислить объём комбинаций даже в обычных квадратов средней лабораторной величины невероятно сложно, а точнее очень трудоёмкая работа.

Но выясняется интересная деталь, излучение стороны квадрата, которую мы берём за фиксированную величину есть излучение положительного вектора 4 на вектор -3. Как такое возможно? (это одна из вариаций, обозначенных мной) Получается, что отрицательное излучение, которое есть внутреннее излучение стороны квадрата неполная картина математического взаимодействия, а лишь раскрытие подробности излучений. То есть правильная формула должна выглядеть так: 4—4 (-3), а ещё более правильно (-3) -4-4- (-3), но это симметричная формула, а на самом деле здесь также бесчисленные вариации цифрового прообразования.

Но нам нужно выяснить: а что если детально просчитать максимально большое количество вариаций излучений? (только точнее не «энергии», а «потока измерения» (пизма). Получится результат, который позволит говорить о множественности структур мира как внешних так и внутренних, это будет фактологической стороной. И также практический момент-сторона – это перспектива нащупывания в пространстве стыков, уплотнений и наложений равнонаправленных и тождественных величин с целью «прогибать» математическое бытие и совершать движение в этом уплотнении с помощью теории вычисления и практики механистического применения оборудования (машин) для передвижения в бытии. Под бытием обозначим математические вогуности и прогибы. Внешний порядок дел благодаря внутренним вычислениям. В этом пионерство математического прообразования.

Но ещё в задаче у нас сказано о диске и треугольнике. Дело в том, что здесь ещё легче нащупать взаимодействия, так называемые стыки и уплотнения, потому что пизма здесь не симметричная, а стремится к разностям значений, а значит уплотнения будут на стыках очень очевидны.

Примерно это можно в цифровом виде изобразить так: 1, 2, 3, 4, 5, 6+∞ → 1, 2, 3, 4 (диск-треугольник) и в итоге стыки. Но значения также зависят от формы и местоположения, разворота и состояния покоя или движения предметов, их нахождения в помещении или на природе, всё это даёт пизмы и также образует стыки, на которых может прогибаться математическое бытие и осуществляться движение.

В обычных же условиях пизмы практически не ощущаются нами, но при конструктивных научных взаимодействиях они будут являть уплотнения и тем самым давать альтернативные источники движения и горючего, потому что пизмы не только дают способность двигаться, но при правильно обозначенных математических конфигурациях ещё это движение и осуществляют.

Но нужно разобраться ещё по крайней мере в двух вещах (Примечание)

Что такое Всепричинность в данных конфигурациях пизм?

Каков наиболее просто общий знаменатель взаимодействий пизм?

1.Всепричинность в данных вычислениях может использоваться, а может и не использоваться. Без неё можно обойтись, но в то же время если её использовать, то это может дать результаты для установления телепортации, потому что в теории и практике Прообраза время находится и предугадывается в одной точке существования и в то же время само движение пизм внутри тела может придать ему движение без изменения внешнего природного, с помощью также стыков внутри тела и возможно наложений пизм.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Антон Фукалов читать все книги автора по порядку

Антон Фукалов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Корпус наук. Фундаментальные знания отзывы


Отзывы читателей о книге Корпус наук. Фундаментальные знания, автор: Антон Фукалов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x