Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]

Тут можно читать онлайн Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Литагент МИФ без БК, год 2019. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-00117-455-4
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] краткое содержание

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - описание и краткое содержание, автор Йэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Профессор Иэн Стюарт в увлекательной манере и с юмором рассказывает о том, как развивалась математика – с древнейших времен и до наших дней. Он рассматривает наиболее значимые темы и события, обращая особое внимание на их прикладной характер.
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать онлайн бесплатно полную версию (весь текст целиком)

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать книгу онлайн бесплатно, автор Йэн Стюарт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Равны ли соотношения a b и c d Такое определение требует специальных - фото 16

Равны ли соотношения a: b и c: d?

Такое определение требует специальных навыков, зато прекрасно вписывается в ограниченные возможности греческой геометрии. Так или иначе, оно работает; более того, оно позволило греческим геометрам взять теоремы, легко доказуемые с помощью рациональных отношений, чтобы расширить их действие до иррациональных.

Часто они использовали так называемый метод исчерпывания (или, иначе, истощения), в котором некоторые видят предка современного метода пределов и интегрального исчисления. Этим методом они доказали, что площадь круга пропорциональна квадрату его радиуса. Доказательство основывалось на простом факте, открытом Евклидом: площади двух подобных многоугольников соотносятся в той же пропорции, что и квадраты их соответствующих сторон. Круг представлял проблему: он не был многоугольником. Тогда греки построили две последовательности многоугольников: одну помещавшуюся внутри круга, а вторую – снаружи. Каждый следующий многоугольник всё ближе подходит к кругу, и из метода исчерпывания, доведенного до совершенства Евдоксом, следует, что площади самых близких к кругу многоугольников стремятся к его площади и в итоге совпадут с ней.

Евклид

Самым известным греческим геометром, хотя, возможно, и не самым талантливым математиком, считается Евклид Александрийский. Он внес огромный вклад в историю науки, собрав труды предшественников и сведя их воедино, и его «Начала» – шедевр всех времен и народов. Евклид создал не меньше десяти трудов по математике, из которых до нас дошло только пять, и те в поздних копиях, в виде фрагментов. До наших дней не дожил ни один подлинный документ из Древней Греции. Пять имеющихся текстов Евклида называются «Начала», «О делении», «Данные», «Явления» и «Оптика».

«Начала» считаются основным трудом Евклида, который окончательно утвердил разделение геометрии на двумерную (планиметрию) и трехмерную (стереометрию). «О делении» и «Данные» содержат разные дополнения и комментарии в части геометрии. «Явления» посвящены астрономии, сферической геометрии и исследованию геометрических фигур на поверхности сферы. «Оптика» также относится к этой области и может считаться первой попыткой исследования геометрии перспективы – способности человеческого глаза преобразовать трехмерное изображение в двумерную картинку.

Пожалуй, лучшим трудом Евклида можно считать исследование логики пространственных отношений. Если форма имеет определенные свойства, логично, что они определяют и другие ее характеристики. Например, если у треугольника равны все три стороны, т. е. он равносторонний, то должны быть равны и все три его угла. Такой вид утверждений, когда делается допущение, а потом приводится его логическое следствие, называется теоремой. Здесь это теорема о свойствах равностороннего треугольника. Менее интуитивно понятна, зато более известна теорема Пифагора.

«Начала» состоят из 13 книг, выстроенных в логической последовательности. В них обсуждаются геометрия плоскости (планиметрия) и некоторые аспекты геометрии пространства (стереометрии). Важный момент – доказательство существования пяти геометрически правильных многогранников: тетраэдра, гексаэдра (попросту куба), октаэдра, додекаэдра и икосаэдра. Основные фигуры планиметрии – линия и круг, часто встречающиеся в разных сочетаниях: например, треугольник – сочетание трех прямых линий. В стереометрии мы имеем дело с плоскостями, цилиндрами и сферами.

Теорема Пифагора если треугольник прямоугольный площадь большого квадрата А - фото 17

Теорема Пифагора: если треугольник прямоугольный, площадь большого квадрата А равна сумме площадей двух других, В и С

Для современных математиков представляет интерес не столько содержание трудов Евклида, сколько их логическая структура. В отличие от предшественников, он не просто принимает известную теорему как истину. Он ее доказывает.

Что значит доказать теорему? Рассказать своего рода математическую историю, где каждый следующий шаг – логическое следствие предыдущих. Каждое очередное утверждение должно быть подкреплено отсылкой к предыдущим и быть выводом из них. Евклид понимал, что этот процесс не может идти вглубь до бесконечности: он должен с чего-то начинаться, и начальное утверждение не требует доказательств: иначе пришлось бы начинать действия с чего-то еще.

Чтобы запустить процесс, Евклид составил несколько основных определений: четких, ясных утверждений для таких основных «технических» понятий, как линия или круг , по сути очевидных. Типичный пример такого определения: тупым называется угол больше прямого.

Эти определения предоставили терминологию, необходимую для формулировки не требующих доказательств утверждений, которые Евклид разделил на два вида: общие утверждения и постулаты . Типичное общее утверждение: объекты, равные одному и тому же, равны и между собой. А типичный постулат: все прямые углы равны между собой.

Мы уже объединили оба эти типа утверждений в один и называем их аксиомами . Математические аксиомы – исходные утверждения, не требующие доказательств. Мы считаем, что аксиомы – как правила игры, и верим, что они всегда выполняются. Мы уже не задаемся вопросом, верны ли эти правила, – мы уже не думаем, что эта игра единственная в своем роде. Всякий, кто собирается участвовать в какой-то конкретной игре, должен соблюдать ее правила; иначе он волен выбрать другую, но в ней правила первой не будут работать.

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ

Правильный многогранник, или платоново тело, – выпуклый многогранник, который состоит из равных граней в виде правильных многоугольников и имеет равное число ребер, выходящих из каждой вершины. Пифагорейцы описывали пять таких правильных многогранников.

Пять платоновых тел Тетраэдр образован четырьмя правильными треугольниками - фото 18

Пять платоновых тел

• Тетраэдр образован четырьмя правильными треугольниками.

• Куб (гексаэдр) образован шестью квадратами.

• Октаэдр образован восемью правильными треугольниками.

• Додекаэдр образован 12 правильными пятиугольниками.

• Икосаэдр образован 20 правильными треугольниками.

Их связывали с четырьмя стихиями Античности: землей, воздухом, огнем и водой – и с пятым элементом – квинтэссенцией.

Во времена Евклида и позже, почти 2000 лет, математикам такое не могло и в голову прийти. Практически все относились к аксиомам как к самоочевидным истинам, чью незыблемость никто не посмел бы оспорить. Евклид недаром приложил все свои таланты, чтобы сделать аксиомы именно такими, – и почти преуспел. Однако одна – аксиома параллельности – оказалась особенно сложной и не такой уж очевидной. Многие ученые пытались вывести ее из более простых общих понятий. Позже мы увидим, к каким поразительным открытиям привели эти попытки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Йэн Стюарт читать все книги автора по порядку

Йэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] отзывы


Отзывы читателей о книге Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres], автор: Йэн Стюарт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x