Ингве Фогт - Математические трюки для быстрого счёта

Тут можно читать онлайн Ингве Фогт - Математические трюки для быстрого счёта - бесплатно ознакомительный отрывок. Жанр: Математика, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математические трюки для быстрого счёта
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2020
  • Город:
    Москва
  • ISBN:
    978-5-9614-3456-9
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ингве Фогт - Математические трюки для быстрого счёта краткое содержание

Математические трюки для быстрого счёта - описание и краткое содержание, автор Ингве Фогт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Забудьте о калькуляторе, эта книга научит вас скоростным вычислениям в уме или с карандашом. Чтобы считать быстрее, достаточно думать немного иначе, уверен ее автор Ингве Фогт – норвежский журналист научного журнала Apollon и фанат математики. Вы узнаете о простых и нескучных методах быстрого счета, для которых понадобится лишь знание базовых арифметических правил. Метод Трахтенберга, китайский способ счета с помощью черточек и множество других математических техник помогут вам без труда складывать и вычитать, умножать и делить, извлекать квадратный корень и возводить в квадрат большие числа. А еще вы найдете необычные факты и увлекательные истории о числах и людях, которые без ума от них, и познакомитесь с краткой тысячелетней историей систем счисления, начиная со времен Древней Греции до сегодняшней цифровой эпохи.

Математические трюки для быстрого счёта - читать онлайн бесплатно ознакомительный отрывок

Математические трюки для быстрого счёта - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ингве Фогт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

По-моему, самая важная глава в этой книге – «Чудесный метод счета»: в ней мы учимся тому, чего нам так не хватало, – умножать намного быстрее, чем прежде. А если вы особенно въедливы, загляните в главу под названием «Как комбинировать различные математические фокусы». Да, сочетание различных методов еще сильнее разовьет наше умение быстро считать.

Каждый метод отмечен собственным цветом, так что вы с ходу поймете, какие методы применяются. Не жалейте времени и загляните в разные главы – порядок значения не имеет.

Если вы любите читать книги с конца, то вам представилась отличная возможность. Ознакомьтесь со всеми примерами и проверьте, насколько быстро вы справитесь с заданиями. Вы будете поражены. Порой вам даже станет казаться, будто вы считаете быстрее калькулятора – отчасти потому, что многие случайно набирают на калькуляторе неправильные цифры. Оцените по достоинству каждый метод и проникнитесь осознанием того, что вы – один из немногих, кто теперь на «ты» с этими фокусами. Ну а если захотите вникнуть в суть, загляните в самый конец – там вы найдете доказательства.

2

Проще некуда

Семь правил, которые вам понадобятся

Дорогой читатель, позвольте вас успокоить. Чтобы учиться быстрому счету по этой книге, никаких особых познаний в математике вам не понадобится. Единственное, что от вас потребуется, – это помнить несколько простейших базовых правил, которым учат еще в начальной школе. И больше ничего, обещаю! Честное слово, даже если вы не станете читать эту главу, тех правил достаточно, чтобы вы справился с остальными главами моей книги.

Итак, в основе книги лежат семь легких математических правил. Сравнить их можно с содержимым столярного ящика. Строя прекраснейшие дома, плотник пользуется лишь пилой и топором. Вот и вам понадобится всего несколько математических инструментов, чтобы стать мастером быстрого счета. Некоторые из этих инструментов такие простые, что вы, возможно, сочтете лишним их упоминать. Но я все равно расскажу о них – во-первых, потому что они важные, а во-вторых, потому что они простые и лишний раз порадуют вас.

Правило 1

Первое правило на удивление простое. Порядок чисел при умножении роли не играет:

a × b = b × a

Если буквы вам не по душе, могу продемонстрировать то же самое на простейшем цифровом примере.

3 × 7 даст тот же результат, что 7 × 3. Итак, то, в каком порядке перемножать числа, совершенно не важно.

Правило 2

Второе правило тоже манна небесная для тех, кто пребывает в заблуждении и считает математику сложной.

Порядок чисел при сложении роли не играет.

a + b = b + a

И вот вам пример: 2 + 3 дадут в результате то же число, что и 3 + 2.

Правило 3

Квадрат определенного числа выглядит следующим образом: a × a = a 2.

Обратите внимание на крошечную цифру 2 над последней «а» – читая эту книгу, вы успеете близко с ней познакомиться. Математики называют такие цифры степенями.

Вот еще пример: 3 × 3 можно обозначить как 3 2.

Разумеется, отрицательные числа тоже можно возводить в квадрат:

(‒a) × (‒a) = (‒a) 2= a 2

Например: (‒3) × (‒3) соответствует (‒3) 2.

А вот это невероятно красиво:

(‒3) 2дает тот же результат, что и 3 2.

Правило 4

На квадратные корни тоже приятно посмотреть:

картинка 2

Это означает, что если извлечь квадратный корень из возведенного в квадрат числа, то это же число и получится.

На языке цифр это выглядит вот так:

Математические трюки для быстрого счёта - изображение 3

Правило 5

Когда надо умножать отрицательные числа, многие впадают в ступор. Если вас это тоже касается, то быстрому счету вам придется учиться долго.

Одно из важнейших правил звучит так: минус на минус дает плюс.

(‒x) × (‒y) = x × y

Примеры:

(‒2) × (‒3) = 2 × 3 = 6

(‒4) × (‒5) = 4 × 5 = 20

А вот если минус умножить на плюс, то получится, наоборот, минус:

(‒x) × y = ‒(x × y)

Примеры:

(‒2) × 3 = ‒(2 × 3) = ‒6

4 × (‒5) = ‒(4 × 5) = ‒20

Запомним это – минус на минус и минус на плюс, и тогда все минусы математики превратятся для вас в плюсы!

Правило 6

Если хотите понять доказательства приведенных в этой книге методов, придется научиться разлагать числовые выражения на множители и раскрывать скобки:

a(b + c) = ab + ac

(a + c)(b + d) = ab + ad + cb + cd

Вот и все – больше про разложение на множители знать нам ничего не понадобится.

Правило 7

Некоторые методы быстрого счета в этой книге основаны на трех видах квадратичных тождеств, которые включены в стандартную школьную программу. Все они – особые случаи правила 6:

(a + c)(b + d) = ab + ad + cb + cd

Квадратичное тождество первого типа:

(a + b) 2= a 2+ 2ab + b 2

Квадратичное тождество второго типа:

(a ‒ b) 2= a 2‒ 2ab + b 2

Квадратичное тождество третьего типа:

(a + b)(a ‒ b) = a 2‒ b 2

С этими семью правилами в готовальне у вас есть все шансы стать чемпионами быстрого счета. Ну что ж, пора отправляться завоевывать мир! Удачи и успехов!

3

Ходячий калькулятор

Чемпион мира по быстрому счету

В начальной школе я терпеть не мог спорт, зато мечтал стать чемпионом мира по решению в уме всяких математических примеров. Поэтому мне казалось ужасно несправедливым, что школьные спортсмены то и дело выступали на разных соревнованиях, ведь соревнований по математике просто не существовало. Сейчас-то я понимаю, что мое мнение о собственных математических способностях было необоснованно завышенным, я жил в мечтах: хотя считал я и правда довольно быстро, а числа так просто обожал, моих способностей не хватало, если числа в примерах были больше приведенных в таблице умножения. Впрочем, об этом никто не догадывался. Слухи о моих феноменальных математических способностях разлетались со скоростью света и с действительностью ничего общего не имели. Никогда не забуду, как мама одного из моих одноклассников на глазах у всего класса погладила меня по голове и выразила свое восхищение: еще бы, ведь я умею в уме перемножать многозначные числа. Мне тогда было девять лет. А еще мама моего одноклассника слышала, будто я умею и миллионы перемножать. Все это было неправдой, но стеснительность помешала мне опровергнуть слухи. Я смотрел на эту женщину и вспоминал, как однажды, будучи первоклашкой, возвращался из школы домой и был пойман шестиклассниками, которые потребовали сделать за них домашку по математике. Они крепко держали меня (впрочем, особых усилий от них не требовалось – я был самым мелким во всей школе) и, пока я не решил все задачки, не отпускали.

Задачки у них оказались очень простыми. В одной я нарочно допустил ошибку – хотел проверить, заметят ли они, но они, к моей великой радости, ничего не заподозрили. Легенда о моем таланте вдребезги разлетелась в шестом классе, когда отец отвел меня к университетскому профессору, предварительно рассказав ему о моих невероятных успехах. Профессор дал мне несколько примеров и выглядел довольно-таки разочарованным, когда я ошибся в первом же из них. Именно в тот момент я понял, что лучше всего считаю в спокойной обстановке и наилучшее впечатление произвожу на тех, кто сам с математикой не дружит.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ингве Фогт читать все книги автора по порядку

Ингве Фогт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математические трюки для быстрого счёта отзывы


Отзывы читателей о книге Математические трюки для быстрого счёта, автор: Ингве Фогт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x