Александр Гротендик - УРОЖАИ И ПОСЕВЫ
- Название:УРОЖАИ И ПОСЕВЫ
- Автор:
- Жанр:
- Издательство:НИЦ «Регулярная и хаотическая динамика»
- Год:2002
- Город:Ижевск
- ISBN:5-7029-0366-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Гротендик - УРОЖАИ И ПОСЕВЫ краткое содержание
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений.
Книга будет интересна широкому кругу читателей - математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
УРОЖАИ И ПОСЕВЫ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
гладкая проективная поверхность при г = 2. В действительности, насколько мне известно, никто после моего ухода не соизволил поинтересоваться этим важнейшим вопросом, типичным из тех, что вытекают из стандартных гипотез. Согласно велению моды, единственный эндоморфизм, достойный внимания - это эндоморфизм Фробениуса (с которым, отчасти, сумел разделаться Делинь, подручными средствами …).
Прогулка по творческому пути, или дитя и Мать
Вот, выраженная языком не математической техники, но музыкальной метафоры, квинтэссенция еще одной идеи младенческой простоты, тонкой и смелой одновременно. Я развивал эту идею в рамках основных задач, которые считал наиболее неотложными, под заголовком «теория мотивов», или «философия (йога) мотивов», во все время с 1963 по 1969 гг. Эта теория, с ее завораживающим структурным богатством, во многом остается еще на стадии предположений {60} .
Я несколько раз говорю на страницах «РС» о «йоге мотивов» - о том, что представляется мне особенно важным. Здесь излишне рассуждать о том, о чем уже сказано в другом месте. Достаточно указать, что сами «стандартные гипотезы» берут начало в мире йоги мотивов, вытекая из нее естественным образом. В то же время они предоставляют принцип подхода к одной из возможных конструкций понятия мотива.
Эти гипотезы мне казались, кажутся и сейчас, одним из двух наиболее основополагающих вопросов алгебраической геометрии. Ни они,
Это дает представление о том, до какой степени «мотивные когомологии» суть более тонкий инвариант, окруженный «арифметической формой» (если возможно отважиться на такое выражение) многообразия X куда плотнее, чем традиционные инварианты, чисто топологические. В моем восприятии мотивов они представляются, как что-то вроде «пуповины», незаметной, скрытой от взгляда, который связывает алгебро-геометрические свойства алгебраического многообразия со свойствами «арифметической» природы, воплощенными в его мотиве. Последний может рассматриваться, как объект, по духу «геометрический», но в котором «арифметические» свойства, определяемые геометрией, оказываются, так сказать, «обнаженными» и выставленными напоказ.
Итак, мотив представляется как глубочайший «инвариант формы» из тех, что вплоть до настоящего момента удавалось связать с алгебраическим многообразием, помимо его «мотивной фундаментальной группы». И тот и другой инварианты предстают передо мной, как «тени», проявления «мотивного гомотопического типа», которые остается описать (и о которых я скажу несколько слов в примечании «Обзор построек, или инструменты и видение» (PC IV, п° 178, см. постройка 5 (Мотивы), и в особенности стр. 1214)). Именно этот последний объект, мне кажется, должен стать наиболее совершенным воплощением ускользающего интуитивного представления об «арифметической (или мотивной) форме» произвольного алгебраического многообразия.
ни другая, также важнейшая, проблема (так называемая «проблема разрешения особенностей») не разрешены до сих пор. Но в то время как вторая из них высится, сегодня, как и сто лет назад, громадой великолепной и грозной, те, что я имел честь поставить, неоспоримым приговором моды отнесены (в годы, последовавшие за моим уходом с математической сцены, и в точности как собственно тема мотивов {61} ) к разряду прелестной гротендической чепухи. Но я снова забегаю вперед…
17. По правде сказать, я не так уж много и подробно раздумывал над гипотезами Вейля. Иная, широкая панорама уже начинала разворачиваться передо мной. Я старался уловить взглядом все, что мог, и изучить тщательно, ничего не упустив. То, что я видел перед собой, выходило далеко за пределы (предположительных) нужд доказательства, оставляя позади даже то многое, что можно было предвидеть, вооружившись оптикой этих гипотез. С появлением теорий схемы и топоса мне вдруг открылся новый, неожиданный мир. «Гипотезы», бесспорно, занимали в нем центральное положение: как столица обширной империи, где не счесть провинций. Но, как правило, между этим почтенным, великолепным городом и отдаленными областями огромной страны нет настоящей связи: дальние дороги, ненадежная почта… Прямо себе этого не говоря, я все же знал, что отныне служу великой задаче. Мне предстояло исследовать огромный, неведомый мир: изучить его географию, вплоть до самых удаленных границ, исходить все дороги; тщательно, одну за другой, описать ближайшие, наиболее доступные провинции. И все свои находки нанести на карту - как можно точнее и подробнее, до последней деревушки, до самой скромной хижины в ней.
На эту-то работу в основном и уходили мои душевные силы. То был терпеливый и долгий труд по закладке основ, который я один перед собой видел ясно, и, главное, «нутром чувствовал». Далеко опередив в этом отношении все остальные задачи, он забрал себе наиболее внушительную часть моего времени, между 1958 (когда, одна за другой,
Прогулка по творческому пути, или дитя и Мать
появились теории схем и топосов) и 1970 (годом моего ухода с математической сцены).
Впрочем, я нередко в нетерпении грыз удила, проклиная каждую задержку. Эти бесконечные задачи давили мне на плечи неотвязным, назойливым грузом. Ведь, как только по сути в них разберешься, новизна пропадает, а то, что остается на ее месте, льнет к рукам бытовой рутиной. И тогда - какой уж там бросок в неизвестное! Так, хлопоты по хозяйству… Вот и приходилось постоянно сдерживать в себе стремление пуститься вскачь - инстинкт первооткрывателя, отправляющегося на поиски никому не ведомых, безымянных миров (а они все звали и звали меня, заглядывали в глаза, просили назвать по имени…). Эта тяга, которой я мог давать волю не иначе, как изредка и почти украдкой, все эти годы получала лишь скудное удовлетворение.
И все же, по сути я знал, что передаваемая ей доля энергии - ворованная (иначе не скажешь) у моих «задач» интендантского толка - обретала по дороге иную, редкую, изысканную структуру. И не мудрено, ведь ее путь лежал через творчество. В чем его и искать, как не в напряженном внимании, с которым вслушиваешься в голоса вещей, стремясь различить зов того, что просит себе плоти, чтобы появиться и жить… В темноте, среди тайных, бесформенных, влажных складок питающего лона, возможен лишь неясный намек на очертания - и неуклонная, страстная воля родиться на свет. Говоря о труде открытия, как не признать, что в этом напряженном внимании, в этой жаркой заботе и есть его главная сила. Так, проникая под слой питательной почвы, солнечное тепло торопит семена. Навстречу его ласке из земли, как некое чудо, пробиваются едва заметные ростки; созревший бутон раскрывается и видит свет дня.
Оглядываясь на свой жизненный труд как математика, я угадываю в нем действие двух сил, или стремлений - различной природы, равно глубоких. Чтобы их обозначить, я выбрал, во-первых, образ строителя, во-вторых - первопроходца, или исследователя. Поставив их рядом, я вдруг поразился, до чего оба они «мужественны», «ян», даже «мачо» {62} ! У этих слов гордое звучание мифа, в них слышится эхо «великих событий». Несомненно, эти образы были мне навеяны остатками моего прежнего, «героического» представления о творчестве; уж оно-то в свое время было «ян» с ног до головы и выше. В таком виде они создают сильно искаженное, чтобы не сказать застывшее по стойке смирно, впе-
Читать дальшеИнтервал:
Закладка: