Александр Гротендик - УРОЖАИ И ПОСЕВЫ

Тут можно читать онлайн Александр Гротендик - УРОЖАИ И ПОСЕВЫ - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство НИЦ «Регулярная и хаотическая динамика», год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    УРОЖАИ И ПОСЕВЫ
  • Автор:
  • Жанр:
  • Издательство:
    НИЦ «Регулярная и хаотическая динамика»
  • Год:
    2002
  • Город:
    Ижевск
  • ISBN:
    5-7029-0366-8
  • Рейтинг:
    3.7/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Александр Гротендик - УРОЖАИ И ПОСЕВЫ краткое содержание

УРОЖАИ И ПОСЕВЫ - описание и краткое содержание, автор Александр Гротендик, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений.

Книга будет интересна широкому кругу читателей - математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.

УРОЖАИ И ПОСЕВЫ - читать онлайн бесплатно полную версию (весь текст целиком)

УРОЖАИ И ПОСЕВЫ - читать книгу онлайн бесплатно, автор Александр Гротендик
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если определить удовлетворительным образом само понятие «математической модели» и «законности» ее (в пределах ошибки, допустимых для данных измерений), вопрос «теории великого объединения», или по крайней мере «оптимальной модели» (в смысле, подлежащем уточнению) окажется, наконец, ясно поставленным. В то же время мы, бесспорно, получим более точное представление о степени произвола, сопровождающего (с необходимостью, быть может) выбор таковой модели.

2) Лишь после такого размышления, мне кажется, «техническая» проблема отыскать точную модель, более удовлетворительную, чем те, что ей предшествовали, приобретает свой полный смысл. И одновременно, быть может, наступает пора извлечь на свет вторую аксиому, по умолчанию принятую среди физиков со времен античности, глубоко укоренившуюся в самом способе нашего восприятия пространства: аксиому, утверждающую непрерывность природы пространства и времени (или пространства-времени), «места», где происходят события, которые изучает физика.

Тому должно быть уже лет пятнадцать-двадцать, как, листая скромный томик, заключающий в себе полное собрание трудов Римана, я был поражен замечанием, брошенным им мимоходом. Согласно ему вполне могло бы случиться, что структура пространства в конце концов дискретна, и что «непрерывные» ее модели, на-

Сравнение между моим вкладом в современную мне математику и вкладом Эйнштейна в физику мне приходит на ум по двум причинам: во-первых, и тот и другой труд состоялся за счет перерождения нашего представления о пространстве (в одном случае - в математическом смысле, и в физическом - во втором); во-вторых, оба они приняли форму объединяющего видения, охватившего обширное множество явлений и ситуаций, которые раньше воспринимались совершенно отдельно друг от друга. Мне видится явственно родство по духу между его трудом {73} и моим.

Это родство, на мой взгляд, ничуть не противоречит очевидному различию в существе задач той или иной работы. Как мы уже недавно увидели, перемены, введенные Эйнштейном, касаются понятия физического пространства, так что он черпал из арсенала уже известных математических понятий, ни разу не испытав нужды в том, чтобы его

ми изготовляемые, представляют собой упрощение (возможно, чрезмерное…) более сложной действительности. Для человеческого разума «непрерывное» уловить легче, чем «разрывное», так что первое служит нам приближением, помогающим понять второе. Это замечание, устами математика, необычайно и неожиданно по своей проницательности, ведь на тот момент евклидова модель физического пространства ни разу еще не ставилась под сомнение. В строго логическом смысле, это скорее разрывное традиционно служило техническим приемом подхода к непрерывному.

Достижения математики последних десятилетий, впрочем, привели к возникновению куда более близкого симбиоза между непрерывными и разрывными структурами, чем это можно было себе вообразить еще в первой половине нашего века. Всегда выходило так, что при поисках «удовлетворительной» модели (или, в случае необходимости, совокупности таких моделей, «подходящих» друг к другу в такой степени, в какой только возможно…), будь она «непрерывной», «дискретной» или «смешанной» природы, неизменно вступало в игру богатое концептуальное воображение и настоящее чутье, чтобы изучить и вывести на свет математические структуры нового типа. Воображение или «чутье» такого рода, мне кажется, редкая штука, не только среди физиков (Эйнштейн и Шредингер были, по-видимому, в числе немногих исключений), но даже среди математиков (тут уже я говорю с полным знанием дела).

Резюмируя, я предвижу, что ожидаемое обновление (если оно состоится…) будет проведено скорее математиком по духу, хорошо осведомленным в области серьезных физических проблем, нежели физиком. Но в первую очередь это должен быть человек с «широким философским кругозором», чтобы уловить суть проблемы. Она ведь отнюдь не имеет технической природы, но относится к основополагающим вопросам «естественной философии».

Прогулка по творческому пути, или дитя и Мать

расширить или хотя бы переворошить в поисках чего-либо особенно глубоко запрятанного. Его вклад заключался в том, что он нашел среди математических структур, известных к тому времени, те, что были наиболее приспособлены служить как «модели» для мира физических явлений. Его модель пришла на смену предыдущей, бывшей уже при смерти {74} , когда-то завещанной его предшественниками. В этом смысле его труд был вот именно трудом физика и, сверх того, трудом естественного философа, как понимали задачи последнего Ньютон и его современники. Это «философское» измерение отсутствует в моем математическом труде. Мне никогда не приходило в голову задаться вопросом о возможных связях между воображаемыми, «идеальными» концептуальными конструкциями, осуществимыми во Вселенной математических объектов, и явлениями физического мира (и даже событиями из мира духовного). Мой труд был трудом математика, намеренно обходящего стороной вопрос «приложений» (в других науках) или «мотивации» и внутренних, душевных корней того, что побуждало меня к работе. Математика, к тому же, влекомого духом, прежде всего прочего, к неустанному расширению арсенала основных для своего искусства понятий. Так-то мне и привелось, совершенно не осознавая того и как бы играючи, поставить с ног на голову самое что ни на есть основополагающее понятие геометрии: понятие пространства (и «многообразия»), то есть наше представление о самом месте, где живут геометрические существа. Новое понятие «пространства» (что-то вроде «обобщенного пространства», но только точки, которые должны как будто бы его образовывать, более или менее из него исчезли), ничем не напоминает, по сути, понятие, которое Эйнштейн внес в физику (отнюдь не обескураживающее для математика). Здесь, напротив, напрашивается сравнение с квантовой механикой, открытой Шредингером {75} . В этой новой механике традиционная «материальная точка» исчезает, уступив место чему-то вроде «вероятностного облака», более или менее плотного в той или иной области пространства, в зависимости от «вероятности», с которой точка находится в этой области. В этом новом подходе явст-

венно ощущается «мутация» нашего способа восприятия явлений в механике, еще более глубокая, чем та, что приведена в действие моделью Эйнштейна - мутация, которая не ограничивается простой заменой математической модели, немного узкой в плечах, другой похожей, но большего размера или лучше скроенной. На этот раз новая модель так мало напоминает старые добрые традиционные модели, что даже математик, будь он при этом большим специалистом в области механики, перед ней вдруг чувствует себя в недоумении, даже в растерянности (или в бешенстве…). Переход от механики Ньютона к эйнштейновской должен ощущаться математиком примерно так же, как переход от давнего, трогательного провинциального диалекта к парижскому жаргону последней моды. Напротив, перейти к квантовой механике - все равно что заменить французский китайским.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Гротендик читать все книги автора по порядку

Александр Гротендик - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




УРОЖАИ И ПОСЕВЫ отзывы


Отзывы читателей о книге УРОЖАИ И ПОСЕВЫ, автор: Александр Гротендик. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x