Александр Гротендик - УРОЖАИ И ПОСЕВЫ
- Название:УРОЖАИ И ПОСЕВЫ
- Автор:
- Жанр:
- Издательство:НИЦ «Регулярная и хаотическая динамика»
- Год:2002
- Город:Ижевск
- ISBN:5-7029-0366-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Гротендик - УРОЖАИ И ПОСЕВЫ краткое содержание
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений.
Книга будет интересна широкому кругу читателей - математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
УРОЖАИ И ПОСЕВЫ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Самодовольство и обновление
никогда не доходило. Характером мы были несхожи; зато в математике нас на редкость многое объединяло. Иногда у меня возникало чувство, будто мы с ним в совершенстве дополняем друг друга.
Что-то похожее я (позднее) испытал в своей жизни только однажды, когда познакомился с Делинем. Та же общность математических интересов, та же «состроенность душ» - даже, пожалуй, еще сильнее. Впрочем, я припоминаю, что вопрос о принятии Делиня сотрудником в IHES4 в 1969 г. внес в наши отношения какой-то разлад. Но я не назвал бы это конфликтом: мы как будто не ссорились, и вообще я не замечал в наших с ним отношениях сколько-нибудь резких перемен.
Кажется, на этом я завершил обзор. Отчет готов: перед нами все, сколько-нибудь осязаемые, проявления конфликта на уровне личных взаимоотношений (между коллегами, учениками и проч.) внутри нашей среды - и это за добрых двадцать лет с лишком. Хотите - верьте, хотите - нет. Итак, в райском уголке, столь любезном моему сердцу, люди не знали ссор - а стало быть, и презрения? Еще одно противоречие в математике?
Решительно, этим стоит заняться подробнее!
21. Выше, пытаясь разобраться в своих воспоминаниях, я заведомо пропустил несколько мелких неприятных эпизодов. Конечно, в моих отношениях с тем или иным из коллег временами пробегал «холодок» отстраненности; причиной тому оказывалась, как правило, моя чрезмерная обидчивость. Мне следовало бы упомянуть здесь три-четыре случая, когда забывчивость друга явно наносила удар моему самолюбию. Например, мне могло показаться, что моя идея или научный результат, о котором я рассказал своему товарищу, сыграли известную роль в работе, которую он только что опубликовал - и забыл в ней об этом упомянуть. Все эти истории задержались у меня в памяти, а значит, в свое время затронули какое-то чувствительное место - эдакий родничок на оболочке души, который, как видно, с годами не зарастает! Только один раз я позволил себе упрекнуть коллегу в забывчивости - а честность моих друзей была, безусловно, вне подозрений. Уверен, что и мне самому случалось так ошибиться, пропустив необходимую ссылку в той или иной из своих работ. Но и меня никто никогда этим не корил. Вообще, я не помню, чтобы вопрос о приоритете
4Institut des Hautes Etudes Scientifiques - Институт высших научных исследований - прим. перев.
хоть однажды послужил внутри моего «микрокосма» причиной ссоры, вражды или даже просто кисло-сладкого словца, мимоходом брошенного в разговоре. Все-таки один раз, когда отсутствие подобающей ссылки в работе одного из моих коллег уж слишком (на мой взгляд) бросалось в глаза, я решил ему об этом сказать. Тогда все обошлось короткой перепалкой - и она только оздоровила общую атмосферу, не оставив в наших душах едкого осадка. Тот мой приятель был очень одаренным математиком; в частности, новые идеи он схватывал на лету и легко усваивал. При этом мне кажется, он обладал досадной склонностью иногда принимать за свои те из математических находок, о которых он в действительности услышал от кого-то другого.
Вообще, здесь кроется известная трудность; с ней в той или иной форме неизбежно сталкиваются все математики (и не только они). Ее нельзя объяснить одним лишь тщеславным стремлением каждого накопить побольше «заслуг», как реальных, так и воображаемых. Другое дело, что это большинство людей действительно этим страдает, и я здесь далеко не исключение. Но нельзя забывать, что понимание той или иной ситуации (в математике или где бы то ни было), вне зависимости от того, каким путем мы к нему приходим, - нечто по сути своей сугубо личное. Даже если вначале кто-то помог тебе выйти на верную дорогу, ты все равно идешь по ней на своих двоих, без попутчиков - и горизонты впереди открываются тебе одному. Ты внимательно всматриваешься в рисунок картины, к тебе приходит понимание; все это, повторяю, твой собственный, сугубо личный опыт. Видение, которое тебе так открылось, иногда можно передать другому; но и тогда твой собеседник воспримет его по-своему. Вот почему для того, чтобы разобраться, какова «заслуга» другого в формировании твоего нового видения - или понимания ситуации, к которому ты пришел - нужна огромная бдительность.
Сам-то я далеко не всегда отличался подобной бдительностью: право же, это последнее, о чем я в те годы беспокоился. Между тем, я определенно ожидал, что другие станут проявлять ее по отношению ко мне. Первым и единственным человеком, который заставил меня задуматься об этом, был Майк Артин. Как-то раз он сказал мне - с шутливым видом, словно речь шла о секрете Полишинеля - что, ухватив живую идею за загривок, нет смысла тут же делить ее на части, высчитывая, кому что по праву принадлежит. Иными словами, когда ты подходишь
Самодовольство и обновление
вплотную к сути того или иного вопроса, - так, что уже можешь, перегнувшись через край, заглянуть в самую глубину, - невозможно толком разобрать, что здесь придумал ты, а что тебе подсказал кто-то другой; да и незачем.
Поначалу это соображение привело меня в некоторое замешательство. Мои старшие товарищи - Картан, Дьедонне, Шварц и другие - не могли бы сказать мне ничего подобного. В правила профессиональной этики, которые я в свое время изучал на их примерах, это никак не вписывалось. И все же, я чувствовал, что в его словах - а главное, в беззаботной веселости его голоса - содержалась некая истина, до сих пор от меня ускользавшая; это сбивало с толку {82} . В том, как я относился к математике (и прежде всего к математическим результатам) всегда было очень много честолюбия. Майк же - совсем другой человек. Глядя на него, нельзя было понять: то ли он «всерьез» занимается математикой, то ли просто забавляется, как веселый мальчишка. Он как будто увлечен игрой по уши; но чтобы из-за нее не есть, не пить да ночей не спать - это уж извините.
22. Прежде чем глубже погрузиться в раздумья, оставив позади (обманчивую подчас) видимую поверхность, мне хотелось бы высказать одну мысль. Точнее, она сама спешит сорваться у меня с языка. Звучит она примерно так: математическая среда, в которой я обретался в пятидесятые и шестидесятые годы - итого, два десятилетия кряду - действительно была миром без ссор и конфликтов. Это само по себе достаточно необычно; здесь стоит задержаться и поразмыслить.
Стоило бы уточнить, что говоря о математической среде тех лет, я имею в виду довольно узкий круг математиков, то есть центральную часть моего «микрокосма». Это «ядро» составляли всего-то человек двадцать моих коллег: ближайшие друзья, с которыми мы часто встречались и подолгу спорили о математике. Я как-то не осознавал раньше, что большинство из них были членами Бурбаки (сейчас, когда я перебрал в памяти их имена, это открытие меня поразило). Спору нет, Бурбаки были сердцем и душой моего микрокосма. Почти все мои друзья-математики так или иначе имели отношение к группе. В шести-
Читать дальшеИнтервал:
Закладка: