Александр Гротендик - УРОЖАИ И ПОСЕВЫ
- Название:УРОЖАИ И ПОСЕВЫ
- Автор:
- Жанр:
- Издательство:НИЦ «Регулярная и хаотическая динамика»
- Год:2002
- Город:Ижевск
- ISBN:5-7029-0366-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Гротендик - УРОЖАИ И ПОСЕВЫ краткое содержание
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений.
Книга будет интересна широкому кругу читателей - математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
УРОЖАИ И ПОСЕВЫ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В моих отношениях с учениками «до 70-го» я не помню ни одной открытой ссоры - бывали, конечно, мимолетные охлаждения, но не более того. Как-то раз мне пришлось предупредить одного из учеников, что он, на мой взгляд, недостаточно серьезно относится к работе. Я сказал
ему, что если так будет продолжаться, я вынужден буду от него отказаться. Само собой, он не хуже меня понимал, о чем идет речь. Он учел мою просьбу, взялся за дело - и инцидент, что называется, был исчерпан. Другой случай относится уже к началу семидесятых, когда мои мысли в основном занимала работа в группе «Survivre et Vivre», а математика отошла для меня на второй план. Один молодой человек, закончив свою работу под моим руководством, как и положено, передал мне текст диссертации. Я написал отзыв и, по своему обыкновению, показал его автору работы. Просмотрев мои записи, он пришел в ярость. Он решил, что некоторые из моих оценок ставят под сомнение качество его работы (чего я, конечно же, не мог иметь в виду). На сей раз уступил я, и не задумываясь. У меня не было ощущения, что он с тех пор затаил на меня обиду, но не исключено, что я ошибался. Мы, впрочем, никогда не дружили с ним так, как с другими учениками: у нас были хорошие рабочие отношения, и ничего больше. Но все же мне было странно, что он счел мои замечания настолько нелестными - и не думаю, чтобы я включил их в свой отзыв от недостатка доброжелательности. Тогда же, в разговоре, он упомянул имя одного из своих товарищей (который к тому моменту уже защитился под моим руководством). Он сказал, что я в свое время уже написал несправедливый отзыв на диссертацию его друга; он, дескать, «не допустит», чтобы с ним обошлись так же. Но как раз с тем учеником, человеком дружелюбным и чувствительным по натуре, меня связывали самые теплые отношения. Если я и включил в свой отзыв о его работе соображения, позднее так возмутившие его товарища, то уж во всяком случае не от недостатка доброжелательности! И, конечно, я никому из своих учеников не открыл бы «зеленой улицы» к защите диссертации, если бы не был вполне удовлетворен представленной мне работой. Герои этого маленького рассказа - не исключение. Тут можно добавить, что все мои ученики того периода после защиты легко устраивались на работу. Действительно, каждый из них тогда очень быстро нашел место по себе.
Вплоть до 1970 г. я, по сути, не занимался ничем, кроме математики, и почти все свободное время проводил в работе с учениками (22 ). Когда подступала необходимость (или когда это просто могло оказаться полезным), я проводил с тем или иным из них целые дни - мы обсуждали вопросы, еще не разрешенные до конца в его диссертации,
Самодовольство и обновление
или же вместе работали над ее оформлением. В эти периоды напряженной совместной работы я никогда не чувствовал себя «руководителем», заправляющим делом и в одиночку принимающим решения. Напротив, мы трудились сообща, на равных правах, и обсуждения велись до тех пор, пока каждый из нас не оставался вполне удовлетворен результатом. При этом ученик, конечно, выкладывался намного больше, чем я - зато я был опытней, и математическое чутье, которое я успел развить в себе за эти годы, подчас приносило немалую пользу.
Однако то, что мне кажется важнее всего с точки зрения качества научной работы, да и вообще любого исследования, совсем не связано с опытом. Это - требовательность к себе. Речь идет не о том, чтобы тщательно следовать каким-либо общепринятым правилам. Скорее, эта требовательность заключается в напряженном внимании к чему-то тонкому, хрупкому, заложенному внутри нас - к чему-то, что не опишешь набором правил, не измеришь заранее заданной мерой. Степень нашего понимания ситуации, проникновения в суть того, что мы исследуем - вот что это такое. Итак, речь идет о внимании к качеству понимания - меняясь по ходу дела, оно все же присутствует каждую минуту. Пробиваясь незаметным ростком сквозь исходные нагромождения разнородных понятий, утверждений, предположений, так что в общей какофонии едва слышна его робкая тема, оно, шаг за шагом, приводит нас к полной ясности, к безупречной гармонии. Многомерность, глубина исследования (при этом неважно, стремимся ли мы достичь полного или частичного понимания ситуации), определяется тем, насколько живо и неослабно в нас это внимание. И в этом смысле нельзя принудить себя быть внимательным, нарочно стараясь «быть начеку». Внимание приходит само собой, рождаясь от настоящей страсти к познанию, и никогда - от честолюбивых устремлений, от жажды наград.
Это внимание иногда называют «строгостью». Но тогда это строгость внутренняя, чуждая каким бы то ни было канонам, принятым в данный момент в рамках данной дисциплины. Если на страницах этой книги я позволяю себе достаточно вольно обходиться с правилами подобного рода в математике (хотя они, безусловно, полезны сами по себе - ведь я и сам много лет преподавал их студентам), то все же не думаю, что строгости в них меньше, чем в моих прежних работах, написанных в каноническом стиле. Если мне и удалось передать уче
никам нечто более ценное, чем знание математического языка и приемов нашего ремесла, то это именно требовательность к себе (внимание, строгость). В жизни мне ее недоставало не меньше, чем любому другому, но в математике я, пожалуй, мог бы ею и поделиться (23). Спору нет, скромный подарок - а все-таки лучше, чем ничего.
27. Не думаю, чтобы студенты, которые хотели со мной работать, боялись меня или хотя бы «робели» в моем присутствии - не считая, быть может, тех двоих молодых людей, с которыми мы так и не сумели найти общий язык. Другое дело, что все они к тому моменту уже были со мной знакомы - например, видели меня на моем же семинаре в IHES. Если поначалу между нами и возникала некоторая неловкость, то она быстро исчезала в ходе работы. А впрочем, два исключения из этого правила я все-таки мог бы назвать. Один из моих учеников так и не научился по-настоящему любить математику. Живого интереса к науке у него не было, на мои вопросы он отвечал только «да» и «нет» - даже во время нашей с ним совместной работы. Может быть, дело было еще и в том, что в ту пору я уже не мог работать с учениками так много, как раньше. Мы с ним не работали подолгу над отдельными «кусками» его программы, как это бывало раньше с другими учениками. И впрямь, я не припомню, чтобы я проводил с ним в обсуждениях целые дни или хотя бы вечера. Скорее, мы, как правило, встречались урывками, на два-три часа, чтобы обговорить тот или иной вопрос. Решительно, это не мне с ним, а ему со мной не повезло в тот момент!
Другой молодой математик, о котором я хочу рассказать, напротив, работал со мной в ту пору, когда времени у меня было более чем достаточно. Отношения между нами с первых же дней стали теплыми и сердечными. В каком-то смысле мы с ним даже «дружили семьями»: я часто навещал его, он заходил ко мне - у меня было несколько таких учеников. Впрочем, в такой дружбе всегда было что-то поверхностное. По сути, я ничего не знал о жизни своих учеников - точно так же, как я не знал, что происходит в моем собственном доме (разве что иногда чувствовал неладное). Конечно, я помнил имена их жен и детей (да и то иногда забывал, к своему ужасу!). Быть может, я тогда был слишком «зацикленным» даже для математика. Но мне думается, что и вообще среди моих знакомых математиков даже самые тесные, самые сердечные взаимоотношения, как правило (если не всегда), оставались поверхностными. Получалось, что люди почти ничего не знали
Читать дальшеИнтервал:
Закладка: