Александр Гротендик - УРОЖАИ И ПОСЕВЫ

Тут можно читать онлайн Александр Гротендик - УРОЖАИ И ПОСЕВЫ - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство НИЦ «Регулярная и хаотическая динамика», год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    УРОЖАИ И ПОСЕВЫ
  • Автор:
  • Жанр:
  • Издательство:
    НИЦ «Регулярная и хаотическая динамика»
  • Год:
    2002
  • Город:
    Ижевск
  • ISBN:
    5-7029-0366-8
  • Рейтинг:
    3.7/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Александр Гротендик - УРОЖАИ И ПОСЕВЫ краткое содержание

УРОЖАИ И ПОСЕВЫ - описание и краткое содержание, автор Александр Гротендик, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений.

Книга будет интересна широкому кругу читателей - математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.

УРОЖАИ И ПОСЕВЫ - читать онлайн бесплатно полную версию (весь текст целиком)

УРОЖАИ И ПОСЕВЫ - читать книгу онлайн бесплатно, автор Александр Гротендик
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

43

43О бурном зарождении новой геометрии (1958 г.) идет речь в сноске п° 31. Понятие ситуса, или «топологии Гротендика» (предварительная версия понятия топоса), появляется по горячим следам понятия схемы. Оно, в свою очередь, предоставляет в распоряжение математиков новый язык «локализации» или «спуска», который применяется на каждом шагу при развитии темы и инструмента теоретико-схемных. Понятие топоса, более глубокое и геометрическое, остается невыраженным в явном виде в течение нескольких последующих лет; оно выбирается на свет главным образом начиная с 1963 г. с развитием этальных когомологии и понемногу заставляет признать себя первым из основополагающих.

44

44Удобно также включить в этот ряд и случай р = оо, соответствующий алгебраическим многообразиям «в характеристике нуль».

45

45Отчет об этом «бурном старте» теории схем был предметом моего доклада на Международном Конгрессе Математиков в Эдинбурге в 1958 г. Текст этого доклада мне представляется одним из лучших введений в теорию схем, способным (быть может) увлечь читателя-геометра идеей ознакомиться с внушительным трактатом (позднейшим) «Начала Алгебраической Геометрии», в котором тщательным образом (не опуская ни единой технической подробности) излагаются новые основы и новые методы алгебраической геометрии.

46

46Говоря о понятии «предела», я подразумеваю здесь в первую очередь «предельный переход», скорее чем понятие «границы» (которое ближе нематематику).

47

47По правде говоря, инварианты, введенные Бетти, были гомологиями. Когомологии, более или менее эквивалентные им, «дуальные» понятия, были введены гораздо позднее. Этот аспект обрел превосходство над начальным, «гомологическим», главным образом, бесспорно, вслед за введением Жаном Лерэ точки зрения, основанной на понятии пучка, о чем говорится ниже. В техническом отношении можно сказать, что огромная часть моего труда в области геометрии состояла в извлечении на свет и развитии в тех или иных пределах недостающих когомологических теорий для пространств и многообразий всех видов, прежде всего «алгебраических многообразий» и схем. Мне привелось, прокладывая дорогу, истолковать традиционные гомологические инварианты в терминах когомологических, и тем самым представить их в совершенно новом свете.

48

48Парадоксально, у Вейля был прочный «барьер», очевидно, инстинктивный, против когомологического формализма - при том, что именно его прославленные гипотезы в значительной мере послужили основой для развития важнейших когомологических теорий в алгебраической геометрии, начиная с 1955 г. (первоначальный толчок процессу был дан Серром, с его основополагающей статьей АКП, уже упоминавшейся в одной из предыдущих сносок).

49

49(Предназначено для математика.) По правде говоря, здесь речь идет о пучках множеств, а не о пучках абелевых групп, введенных Лерэ как самые общие коэффициенты «теории когомологии». Думаю, что я первым начал систематически работать с пучками множеств (начиная с 1955 г., в моей статье «Общая теория расслоенных пространств со структурным пучком», изданной в Канзасском Университете).

50

50(Предназначено для математика.) Строго говоря, это справедливо лишь для пространств, называемых «трезвыми». Они, однако же, составляют почти все типы пространств, с какими обыкновенно сталкиваешься - в частности, таковы все «отделимые» пространства, излюбленные аналитиками.

51

51«Зеркало», о котором речь, таково, что если поместить перед ним пространство, оно даст (как в «Алисе в стране чудес») в качестве «отражения» соответствующую

52

52 (Предназначено для математика.) Здесь речь идет прежде всего о свойствах, которые я ввел в теорию категорий под названием «свойства точности» (одновременно с современным категорным понятием общих индуктивных и проективных «пределов»). См. русский перевод «О некоторых вопросах гомологической алгебры», Библиотека сборника «Математика«, Москва, 1961.

53

53Так, можно построить топос весьма «объемный», в котором будет только одна «точка» - или вовсе ни одной!

54

54 Название «топос» было выбрано (в связи с понятием «топология» или «топологический»), чтобы наводить на мысль о том, что речь идет об объекте, в полном смысле слова относящемся к области топологической интуиции. По обилию мысленных образов, которые слово «топос» вызывает, его можно рассматривать как более или менее эквивалент термину «пространство» (топологическое), просто сильнее подчеркивая «топологическую» специфику понятия. (Так, есть «векторные пространства», но не «векторные топосы», вплоть до нового распоряжения!) Необходимо сохранить оба выражения, каждое со своей спецификой.

55

55Среди них есть, в частности, конструкции известных «топологических инвариантов», переведенные на новый язык инвариантами когомологическими. Для этих последних я сделал все, что требовалось, - в статье, уже упоминавшейся («О некоторых вопросах гомологической алгебры», 1961) - чтобы придать им смысл для любого топоса.

56

56(Предназначается для читателя-математика.) Когда я говорю «довести до конца эту скромную идею», то имею в виду идею этальных когомологии, как подход к гипотезам Вейля. Именно под этим лозунгом произошло открытие мною понятия ситуса в 1958 г. и дальнейшее развитие его (или очень близкого к нему понятия топоса) и формализма этальных когомологии под моим руководством (с помощью нескольких сотрудников, о которых я скажу в свое время) между 1962 и 1966 годами.

57

57(Предназначено для математика.) Гипотезы Вейля находятся в зависимости от предположений арифметической природы: именно, рассматриваемые в них многообразия должны быть определены над конечным полем. С точки зрения когомологического формализма это приводит к тому, что особое место получает эндоморфизм Фробениуса, соответствующий данной ситуации. При моем подходе ключевые свойства (типа «обобщенной теоремы об индексе») связаны с произвольными алгебраическими соответствиями и не требуют никаких ограничений арифметической природы над основным полем, предварительно заданным.

58

58При этом после моего ухода в 1970 г. весьма четко наметилось движение реакции, которое вылилось в ситуацию относительного застоя, о которой я не раз упомяну при случае на страницах «РС».

59

59«Обыкновенные» значит здесь: «определенные над полем комплексных чисел». Теория Ходжа (называемая также гармоническими интегралами) была мощнейшей из известных когомологических теорий в контексте комплексных алгебраических многообразий.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Гротендик читать все книги автора по порядку

Александр Гротендик - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




УРОЖАИ И ПОСЕВЫ отзывы


Отзывы читателей о книге УРОЖАИ И ПОСЕВЫ, автор: Александр Гротендик. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x