Яков Перельман - Живой учебник геометрии
- Название:Живой учебник геометрии
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Яков Перельман - Живой учебник геометрии краткое содержание
Предлагаемое классическое пособие Я.И.Перельмана призвано пробудить у читателя интерес к геометрии или, говоря словами автора, «внушить охоту и воспитать вкус к ее изучению». Наука выводится «из стен школьной комнаты на вольный воздух, в лес, поле, к реке, на дорогу, чтобы под открытым небом отдаться непринужденным геометрическим занятиям без учебника и таблиц…»
Живой учебник геометрии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Подобным же образом можно найти, чему равна сумма углов,! расположенных вокруг общей вершины, как на черт. 23. Продолжив одну из сторон за общую вершину (черт. 24), получим две группы углов: группу 1 и а, сумма которых равна двум прямым (почему?), и группу углов 2, 3, Ь, сумма которых равна также двум прямым углам; значит, сумма всех углов вокруг общей вершины равна 4 прямым углам.

Повторительные вопросы
Чему равна сумма смежных углов? – Сумма нескольких углов, расположенных по одну сторону прямой линии? – Сумма всех углов, расположенных вокруг общей вершины?
§ 9. Противоположные углы
Предварительные упражнения
1) На черт. 25 уг. 1 = 48°. Найти прочие углы.
2) На черт. 25 уг. b = 136 °. Найти прочие углы.

Когда две прямые линии пересекают друг друга (черт. 25), они образуют две пары углов, стороны которых составляют продолжение одни других: одна пара – уг. 1 и уг. 2; другая – уг. а и уг. b. Особенность противоположных углов та, что углы, составляющие такую пару, всегда равны между собою: у г. 1 = уг. 2, уг. а = у г. b. Действительно, если например (черт. 25) уг. 1 = 40°, то уг. b = 180° – 40° = 140°, уг. 2 = 180° – 140° = 40°, и уг. а = 180° – 40° = 140°; мы видим, что уг. 1 = уг. 2, и уг. а = уг. b. Вообще, так как уг. 1 вместе с углом а равен двум прямым (почему?), а уг. 2 вместе с тем же углом а тоже равен двум прямым, то ясно, что уг. 1 должен равняться уг. 2. Итак:
П р о т и в о п о л о ж н ы е у г л ы р а в н ы.
Повторительные вопросы.
Какие углы называются противоположными? знаете свойство противоположных углов?
§ 10. Окружность
До сих пор мы говорили только о прямых линиях. Из к р и в ы х линий остановимся на о к р у ж н о с т и (черт. 26). Окружность чертят циркулем. Острие ножки раздвинутого циркуля втыкают в бумагу, другую же ножку с карандашом вращают вокруг первой; когда карандаш сделает полный оборот, он проведет на бумаге замкнутую кривую – окружность. Та точка, в которую было воткнуто острие циркуля, называется ц е н т р о м окружности. Понятно, что все точки окружности удалены от центра на одинаковое расстояние; это расстояние называется р а д и у с о м окружности. Значит:
О к р у ж н о с т ь е с т ь к р и в а я л и н и я, в с е т о ч к и к о т о р о й о д и н а к о в о у д а л е н ы о т о д н о й
т о ч к и, н а з ы в а е м о й ц е н т р о м.
Прямая, соединяющая две точки окружности через центр, называется д и а м е т р о м.
Всякая часть окружности называется ее д у г о ю (черт. 27).

Плоская фигура, ограниченная окружностью, называется к р у г о м.
Повторительные вопросы
Что такое окружность? Центр? Радиус? Дуга? – Покажите все это на чертеже. – Все ли радиусы одной окружности равны между собою? – Что больше: диаметр или радиус? Во сколько раз?
Применения
3. Гудок завода слышен на 4 км. Начертить в масштабе 1 км в 1 см границу местности, где слышен гудок этого завода.
Р е ш е н и е. Вокруг точки, обозначающей положение завода, начертить окружность радиусом 4 см.
4. Радиус круга 100 см. Некоторая точка удалена от центра на 40 см. Лежит ли она внутри круга или вне его? Каково ближайшее расстояние от этой точки до окружности?
Р е ш е н и е. Точка лежит внутри круга. Ближайшее расстояние ее от окружности надо считать вдоль диаметра, проведенного через эту точку; оно равно 60 см. Дальнейшее расстояние (вдоль того же диаметра) – 140 см.
§ 11. Пересечение окружности с прямою и с другою окружностью
Две прямые линии могут пересечься друг с другом только в одной точке; более одной общей точки две разные прямые иметь не могут, – иначе они сливаются одна с другой. В скольких же точках могут пересекаться друг с другом прямая и окружность?
Начертите одну или несколько окружностей и пересеките их прямыми линиями (черт. 28). Вы убедитесь, что прямая и окружность могут встречаться или в двух точках или в одной. Более двух общих точек прямая и окружность иметь не могут.
Подобным же испытанием мы найдем, что и две окружности не могут иметь более двух общих точек: они встречаются или в одной или в двух общих точках (черт. 29). Итак, запомним:
П р я м а я и о к р у ж н о с т ь и л и д в е о к р у ж н о с т и н е м о г у т и м е т ь б о л е е д в у х о б щ и х т о ч е к.

Применения
5. В городе два завода в 8 км друг от друга. Гудок одного слышен на 5 км, другого – на 6 км. Изобразите, в выбранном вами масштабе, границы местности, где слышны гудки обоих заводов.
Р е ш е н и е. Выберем масштаб 2 км в 1 см. Взаимное удаление заводов изобразится тогда отрезком в 4 см. Наметив на чертеже две точки в расстоянии 4 см одна от другой, проведем вокруг одной из них (как около центра) окружность радиусом 21/2 см, а вокруг другой – радиусом 3 см. Окружности пересекутся, и общая часть обоих кругов будет изображать местность, где слышны гудки обоих заводов.
6. Две радиостанции расположены в 600 км одна от другой. Дальность приема одной 400 км, другой – 300 км. Начертите, в масштабе 100 км в 1 см, границу местности, где можно принимать обе станции.
Р е ш е н и е сходно с решением предыдущей задачи
§ 12. Измерение углов
Какою мерою измеряются углы? Д л и н у линий измеряют д л и н о ю определенной линейки (метром); в е с вещей – в е с о м определенной гири. Так и у г л ы измеряют определенным у г л о м, который принимают за меру углов. Мерою для углов избран
п р я м о й угол, потому что все прямые углы имеют одну и туже величину. Но прямой угол слишком велик, чтобы служить удобной единицей меры; поэтому пользуются некоторою д о л е ю его – именно 90-й. Прямой угол делят на 90 равных частей, и такими частями измеряют все прочие углы, т. е. узнают, сколько этих частей заключается в измеряемом угле. 90-я доля прямого угла называется у г л о в ы м г р а д у с о м. Угол в один градус весьма мал; все же для точных измерений приходится пользоваться даже долями такого угла. Принято употреблять для этого 60-ю долю градуса; она называется у г л о в о ю м и н у т о ю. Итак:
прямой угол = 90 углов, градусам,
градус = 60 углов, минутам.
На письме градус сокращенно обозначается маленьким кружком (как и градус температуры), а минута – знаком ’. Например, 23° 27’ означает 23 градуса 27 минут.
Объясним теперь, каким образом производится измерение углов на практике.
Читать дальшеИнтервал:
Закладка: