Эмилия Александрова - Искатели необычайных автографов
- Название:Искатели необычайных автографов
- Автор:
- Жанр:
- Издательство:ТЕРРА-Книжный клуб
- Год:2001
- Город:Москва
- ISBN:5-275-00080-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эмилия Александрова - Искатели необычайных автографов краткое содержание
Любитель изящной словесности Филарет Филаретович Филаретов, или сокращенно Фило, и признающий только красоту математики Матвей Матвеевич Матвеев, или сокращенно Мате, отправляются в путешествие по прошедшим эпохам в поисках автографов великих писателей и математиков. Каково же их удивление, когда оказывается, что они разыскивают одних и тех же людей! На страницах этой удивительной книги вы повстречаетесь с Омаром Хайямом, Блезом Паскалем, Эратосфеном, Фибоначчи, Пифагором и многими другими великими людьми, которые, возможно, предстанут в новом, незнакомом для вас качестве. Немаловажно, что книга написана простым понятным языком и не требует специальных знаний в области математики.
Искатели необычайных автографов - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
— Само собой! — важно кивает Фило.
— Посмотрим теперь, что происходит при трех бросках. Здесь уже возможны восемь случаев:
OOO, ОРО, РОО, РРО, PPP, OOP, OPP, POP.
Преобразуем это хозяйство тем же способом: OOO, 3OOP, 3OPP, РРР. И снова (О + Р) 3= О 3+ 3O 2Р + 3ОР 2+ Р 3. При четырех бросках в нашем распоряжении уже 16 случаев. Стало быть, (О + Р) 4= О 4 + 4O 3Р + 6О 2Р 2+ 4ОР 3+ Р 4. Взглянув на все это вместе, мы увидим, что все время имеем дело с двучленом, иначе говоря, биномом О + Р, возводимым каждый раз в иную степень. Причем показатель степени бинома соответствует числу бросков. При двух бросках перед нами бином в квадрате, при трех — в кубе и так далее. Затем, обратив внимание на правые части наших равенств, увидим, что показатели степени при О и Р всякий раз указывают на заранее условленное число выпадений О или Р, а числовые коэффициенты при этих слагаемых — на число благоприятных случаев. Сумма же всех этих коэффициентов представляет собой общее число всех возможных случаев. И так как вероятность события есть отношение благоприятных случаев к числу всех возможных, то вероятность выигрыша (р) в данном случае равна отношению коэффициента соответствующего слагаемого к сумме всех коэффициентов.
— Все это очень хорошо, — мнется Фило, — но весь вопрос в том, как вычислить коэффициенты заранее? Тем более — их сумму. Допустим, игроки условились бросать монету не по восьми, а по двадцати восьми раз, — что тогда?
— Хороший вопрос, — одобряет Асмодеи. — Из него следует, что нам необходимо вывести общее правило вычисления коэффициентов для любого количества бросков, иначе говоря — для любой степени бинома: О плюс Р в степени n.
— Начнем с того, что выпишем биномы для каждой степени в отдельности, — предлагает Мате. — Ну, в нулевой степени бином, естественно, превращается в единицу.
(О + Р) 0= 1,
(О + Р) 1= О + Р,
(О + Р) 2= O 2+ 2OР + P 2,
(О + Р) 3= О 3 + ЗО 2Р + ЗОР 2+ Р 3,
(О + P) 4= О 4+ 4O 3Р + 6O 2P 2+ 4OР 3+ Р 4.
Остается выписать отдельно все коэффициенты:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
— Ой, — изумляется Фило, — ведь это же треугольник Паскаля! Прекрасно помню, что по наклонным линиям числа там расположены симметрично.
— Умница! — одобрительно зыркает на него Мате. — Теперь вам легко понять, что любой коэффициент при возведении бинома в степень есть не что иное, как некое число сочетаний. А сумма всех коэффициентов данной строки равна двум в степени бинома, то есть номера строки.
Некоторое время Фило сидит молча. Ему необходимо переварить все эти неожиданные для него совпадения. До чего все связано! То-то он никак не мог уразуметь, почему это Ферма и Паскаль, занимаясь теорией вероятностей, обратились вдруг к фигурным числам и формуле сочетаний? А сочетания, оказывается, имеют для теории вероятностей немалое значение.
— Вообще, как я погляжу, — продолжает он уже вслух, — в науке одно постоянно вытекает из другого. Это похоже на разветвленную водную систему, состоящую из тысяч ручейков, речушек и рек…
— …которые в конце концов вливаются в одно большое озеро или море, — развивает его мысль Асмодей. — Нечто подобное как раз произойдет и в науке семнадцатого века. Все ее, иногда разрозненные, а иногда и связанные между собой, течения в конце концов объединятся в научном творчестве двух величайших ученых: англичанина Исаака Ньютона и немца Готфрида Лейбница.
— Бесспорно, — поддерживает его Мате. — Возьмем механику. Все, сделанное ранее Коперником, Галилеем и Кеплером в области движения небесных тел, найдет блистательное подтверждение и завершение в законе всемирного тяготения Ньютона.
— А математика, мсье? — перебивает Асмодей. — Весь этот пристальный интерес к неделимым, к наибольшим и наименьшим величинам, над которыми ломали головы и Декарт, и Роберваль, и Ферма, и, разумеется, Паскаль, — разве не приведет это в конце концов к открытию дифференциального и интегрального исчисления, которое почти одновременно и независимо друг от друга совершат Ньютон и Лейбниц?
— Не забудьте про комбинаторику, — суетится Мате, — науку о всевозможных группировках, к которым как раз относятся сочетания. Комбинаторикой усердно занимались и Ферма, и Паскаль, и Гюйгенс, [63] Гюйгенс Христиан (1629–1699) — выдающийся нидерландский физик, математик, астроном. Изобретатель маятниковых часов, автор многочисленных научных трудов.
который, кстати сказать, тоже внес свою лепту в разработку теории вероятностей. Ньютон же, в свою очередь, использовал сочетания в разложении степени бинома, широко известном под названием бинома Ньютона.
Фило озабоченно хмурится.
— Бином Ньютона… Все это уж было когда-то, но только не помню, когда, — декламирует он себе под нос. — Кажется, в десятом классе…
— С вашего разрешения, не далее чем несколько минут назад, — ехидничает Мате. — Потому что рассмотренные нами степени бинома имеют самое прямое отношение к формуле бинома Ньютона. Остается лишь записать ее в общем виде. — Он снова хватается за свой неизбежный блокнот. — Однако прежде всего запомните, что число сочетаний принято обозначать латинской буквой С…
— От французского «комбинезон» — «сочетание», — поясняет Асмодей.
— При этом справа от С ставятся два индекса, — продолжает Мате, — пониже и повыше. Нижний обозначает число предметов, из которых составляются сочетания. Верхний — число предметов в каждом отдельном сочетании. Например, число сочетаний из пяти по два — C 5 2. А в общем виде число сочетаний из n предметов по k — C n k. Вот теперь можно и записать формулу бинома Ньютона для О и Р, — чтоб уж не отвлекаться от нашей задачи:
(О + Р) n= O n+ C n 1O n-1P + C n 2O n-2P 2+ C n 3O n-3P 3+ … + О n - kP k+ … + Р n.
— А как же все-таки вычислить вероятность выигрыша при любом числе бросков? — недоумевает Фило.
— Могли бы и не спрашивать! Вы ведь уже знаете, что вероятность события есть отношение числа благоприятных случаев к числу всех возможных. И стало быть,

Мате хочет еще напомнить, что 2 n, то бишь сумма всех коэффициентов в разложении степени бинома, это и есть число всех возможных случаев, но вдруг умолкает на полуслове и начинает прислушиваться. Вместо звона монеты и пьяных голосов из караулки теперь доносятся совсем другие, довольно-таки устрашающие звуки.
— По-моему, это храп, — говорит он почему-то шепотом, хотя как раз сейчас опасаться, казалось бы, нечего.
— Да, — соглашается Асмодей. — Похоже, они уже того… готовы.
— Так что же мы здесь сидим! — ахает Фило. — Чего доброго, опоздаем на премьеру.
И, осторожно перешагнув через спящих на полу мушкетеров, компания благополучно достигает противоположной двери караулки, которая выпускает их в сад.
Читать дальшеИнтервал:
Закладка: