Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Название:ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Автор:
- Жанр:
- Издательство:Издательский Дом «Бахрах-М», 2001.
- Год:2001
- Город:Самара
- ISBN:ISBN 5-94648-001-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
II. Как бы этот дракон не пытался стать трехмерным, он остается совершенно плоским. На бумаге, на которой он нарисован, прорезаны два отверстия. Затем она сложена так, что получаются два квадратных «окошка». Но этот дракон упрям, и несмотря на свою плоскостность, он настаивает на том, что он трехмерен — поэтому он просовывает голову в одно из отверстий, и хвост — в другое. [46] Там же. стр. 22.
Этот второй комментарий очень важен. Эшер имеет в виду то, что как бы мы не исхитрялись, пытаясь выразить три измерения в двух, при этом всегда теряется некая «основная сущность трехмерности». Дракон изо всей силы пытается побороть свою двумерность. Он пробует сделать это, высовывая голову из бумаги, на которой, как ему кажется, он нарисован — но мы, находящиеся вне рисунка, видим, насколько тщетны его усилия, поскольку и дракон, и дырки, и складки — всего лишь двумерные изображения соответствующих понятий, и не одно из них не является реальным. Но дракон не может выйти из своего двумерного пространства и не может, подобно нам, этого увидеть.
На самом деле, можно пойти еще дальше. Мы можем вырвать эту картинку из книги, сложить ее, прорезать в ней дырки, вывернуть ее наизнанку, и сфотографировать результат — и она снова станет двумерной. То же самое можно повторить и с фотографией. Каждый раз, когда изображение становится опять двумерным — как бы хитроумно мы не симулировали на нем трехмерность в двух измерениях — оно снова может быть разрезано и сложено.
Имея в виду эту замечательную Эшеровскую метафору, вернемся к программам и людям. Мы говорили о попытке ввести «Геделизирующий оператор» в саму программу. Но даже если бы мы написали программу, выполняющую эту операцию, она не уловила бы сути Гёделева метода. Мы снова можем, находясь вне системы, уничтожить ее методом, ей самой недоступным. Однако позвольте: являются ли наши доводы аргументами за или против идеи Лукаса?

Рис. 76. М. К. Эшер «Дракон» (гравюра на дереве, 1952)
Против Сам факт, что мы не можем написать программу, способную на «Гёделизирование», заставляет нас подозревать, что мы и сами не всегда на это способны. Одно дело — абстрактно аргументировать, что Гёделизирование возможно, и совсем другое дело — знать, как проделать эту операцию в каждом конкретном случае. На самом деле, по мере того, как сложность формальных систем (или программ) возрастает, наша способность «Геделизировать» начинает ослабевать. Это естественно, поскольку, как мы только что выяснили, у нас нет алгоритма, описывающего этот процесс. Если мы не можем объяснить , как применить метод Гёделя в каждом отдельном случае, то для каждого из нас рано или поздно наступит такой момент, когда, столкнувшись со слишком сложным случаем, мы не сможем сообразить, что делать.
Разумеется, этот предел способностей каждого из нас будет весьма приблизительным, так же, как предел веса, который мы способны оторвать от земли. Иногда мы не способны поднять 120 кг а на другой день это у нас получается. Но мы можем быть уверены что нам никогда не удастся поднять 120 тонн. В этом смысле хотя личный предел способностей каждого приблизителен существуют системы которые лежат далеко за пределами человеческой способности к Геделизированию.
Это понятие проиллюстрировано в Диалоге «Праздничная Кантататата». Сначала кажется что Черепахе удастся сколько угодно водить Ахилла за нос. Но затем Ахилл пытается обобщить все ответы в одной схеме. Этот новый трюк получает имя ω. Очень важно то что это имя — новое Это первый пример ситуации, в которой приходится расширить старую схему имен, включавшую имена только для натуральных чисел. Далее вводятся несколько новых расширенных вариантов, чьи имена иногда естественны, а иногда довольно сложны. Но рано или поздно запас имен у нас опять кончится; это произойдет в тот момент, когда схемы ответов
ω, ω ω,ω ω ω, …
объединятся в одну невероятно сложную схему ответов. Придется нам дать этой схеме совершенно новое имя — «ε 0». Новое имя вводится каждый раз, когда совершается принципиально новый шаг, связанный с тем, что мы находим некую нерегулярность в системе. Таким образом, новое имя должно быть придумано ad hoc.
Вы можете подумать, что эти нерегулярности в переходе от одного порядкового числа (так называются эти имена, даваемые нами бесконечности) к другому могут быть разрешены с помощью компьютера; такая программа производила бы новые имена упорядоченно. Когда у нее «кончался бы бензин», она включала бы «центр нерегулярности», производящий новое имя и затем переключающий программу обратно на регулярный контроль. Но эта идея не работает. Дело в том, что сами нерегулярности возникают нерегулярно, и нам понадобилась бы программа высшего порядка — то есть программа, создающая новые программы, дающие новые имена. И даже этого оказывается недостаточно. В какой-то момент становится необходимой программа третьего порядка — и так далее, и тому подобное.
Вся это невероятная сложность берет начало в теореме, которой мы обязаны Алонзо Черчу и Стефену Клини. Эта теорема о структуре «бесконечных порядковых чисел» утверждает, что:
Не существует такой рекурсивно согласованной системы обозначений, которая давала бы имя каждому конструктивному порядковому числу.
Нам придется оставить обсуждение того, что такое «рекурсивно родственные системы нотации» и «конструктивные порядковые числа», более техническим трудам, таким, например, как книга Хартлея Роджерса (Hartley Rodgers, см. Библиографию). Здесь мы удовольствуемся интуитивной идеей. По мере того, как порядковые числа возрастают, в них появляются нерегулярности, и нерегулярности в этих нерегулярностях, и нерегулярности в нерегулярностях нерегулярностей и так далее. Не существует такой единой схемы, которая могла бы назвать все порядковые числа. Из этого следует, что не существует такого алгоритмического метода, который мог бы сказать нам, как приложить метод Гёделя к любой возможной формальной системе. Если не ударяться в мистику, то приходится согласиться с тем, что любое человеческое существо рано или поздно достигнет предела своей способности Геделизировать. С этого момента формальные системы такой сложности, хотя и неполные из-за возможности приложения к ним Гёделева метода, сравняются по мощи с человеческим разумом.
Это только один способ спорить с Лукасом. Существуют другие, возможно, более убедительные, аргументы против его идей, которые мы рассмотрим позже Но этот последний контраргумент очень важен поскольку он касается интереснейшей идеи создания компьютерной программы, способной выйти за пределы самой себя, увидеть себя полностью со стороны и применить трюк Геделя к самой себе. Разумеется, это так же невозможно, как невозможно для патефона воспроизвести собственную разбивальную мелодию. Однако мы не должны считать ТТЧ ущербной по этой причине Дефект, если он и есть, заключается не в самой системе, а в наших ожиданиях того, на что эта система окажется способна. Кроме того необходимо помнить, что и мы сами бессильны против словесного трюка который Гедель перевел в математическую форму—я имею в виду парадокс Эпименида. Это было весьма хитроумно подмечено Ч. Г. Уайтли, когда он предложил высказывание «Лукас не может непротиворечиво утверждать это высказывание» Подумав, вы поймете, что (1) это верно, и все же (2) Лукас не может этого утверждать непротиворечиво. Значит, Лукас также «неполон» по отношению к существующим в мире истинам. То, как мир отражен в его мозгу, не позволяет ему одновременно быть непротиворечивым и утверждать истинное высказывание. Но Лукас подвержен этому не более, чем любой из нас. Он, как и все мы, просто находится на уровне сложной формальной системы.
Читать дальшеИнтервал:
Закладка: