Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Название:ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Автор:
- Жанр:
- Издательство:Издательский Дом «Бахрах-М», 2001.
- Год:2001
- Город:Самара
- ISBN:ISBN 5-94648-001-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
ТЕЗИС ЧЁРЧА-ТЮРИНГА, ВЕРСИЯ ДУШИ: Некоторые происходящие в мозгу процессы могут быть приблизительно воспроизведены на компьютере — но не большинство этих процессов и, безусловно, не самые интересные из них. Но даже если бы удалось симулировать все процессы мозга, то все равно осталось бы объяснить душу, на что не способен никакой компьютер.
Эта версия имеет двойное отношение к ситуации Диалога «Магнификраб». С одной стороны, ее сторонники, скорее всего, нашли бы эту ситуацию глупой и неправдоподобной, но в принципе возможной. С другой стороны, они, возможно, сказали бы, что понимание красоты — это одно из свойств неуловимой души и, следовательно, оно доступно только людям, а не машинам.
Мы еще вернемся к этому, но сначала, раз уж мы заговорили о «душистах», мы должны выразить их версию Тезиса в еще более сильной форме, поскольку именно в нее верит на сегодняшний день множество образованных людей.
ТЕЗИСА ЧЁРЧА-ТЮРИНГА, ВЕРСИЯ ТЕОДОРА РОСЗАКА: Компьютеры просто смешны — как, впрочем, и вся наука.
Подобное мнение преобладает среди тех людей, которые видят угрозу человеческим ценностям во всем, что пахнет числами или точностью. Жаль, что они не видят всей глубины, сложности и красоты исследования таких абстрактных структур, как человеческий мозг — исследования, которое ставит нас лицом к лицу с вопросом о том, что такое человек.
Возвращаясь к красоте — мы собирались ответить, является ли восприятие красоты мозговым процессом и, если так, то можно ли симулировать этот процесс на компьютере. Те, кто не верит, что красота воспринимается мозгом, вряд ли согласятся с тем, что компьютер сможет это сделать. Те же, кто считают, что этот процесс происходит в мозгу, в свою очередь делятся на две группы в зависимости от того, в какую версию Тезиса Черча-Тюринга они верят. Крайний редукционист сказал бы, что любой происходящий в мозгу процесс в принципе может быть трансформирован в компьютерную программу, однако другие могут считать, что красота — слишком неопределенное понятие, чтобы она могла быть выражена в компьютерной программе. Может быть, они думают, что понятие красоты включает элемент иррациональности и поэтому оно несовместимо с самим духом компьютеров.
Мысль о «несовместимости иррационального с самим духом компьютеров» основана на серьёзном смешении уровней. Это ошибочное мнение опирается на идею, что поскольку компьютеры — безошибочно функционирующие машины, они, таким образом, должны быть «логичными» на всех уровнях. Однако совершенно очевидно, что компьютер может быть запрограммирован таким образом, чтобы напечатать серию нелогичных высказываний — или, для разнообразия, несколько высказываний со случайными значениями истинности. И все же, следуя подобным инструкциям, компьютер не совершит никакой ошибки! Наоборот, ошибкой было бы, если бы компьютер выдал что-либо отличное от высказываний, которые ему было приказано напечатать. Это показывает, как безошибочная работа на одном уровне может лежать в основе манипуляций символами на высшем уровне — и цель высшего уровня может быть совершенно отлична от провозглашения истины.
С другой стороны, не следует забывать, что мозг также состоит из безошибочно функционирующих элементов — нейронов. Как только сумма входящих сигналов превышает порог чувствительности нейрона, он возбуждается. Нейрон никогда не забывает своих арифметических познаний, он никогда не ошибается, складывая входящие сигналы. Даже после своей смерти, нейрон продолжает действовать правильно, в том смысле, что его составные части продолжают повиноваться законам математики и физики. Однако мы все прекрасно знаем, что, несмотря на это, нейроны удивительным образом способны порождать ошибочное поведение высшего уровня. На рис. 109 я попытался показать такое столкновение уровней: неверное мнение, существующее на уровне программы, порождено безошибочно функционирующей аппаратурой мозга.
Дело в том, что, как я уже сказал ранее в других контекстах, значение может существовать на двух или более различных уровнях оперирующей символами системы и вместе со значением на каждом из этих уровней может существовать истинность или ложность. Присутствие значения на данном уровне определяется тем, есть ли на этом уровне изоморфное (в какой-либо степени) отображение реальности.
Таким образом, тот факт, что нейроны никогда не ошибаются в сложении (и даже в гораздо более сложных вычислениях) совершенно не влияет на правильность заключений высшего уровня, который опирается на эту аппаратуру. Чем бы не занимался наш высший уровень — попыткой доказать коаны булева буддизма или медитацией над теоремами дзеновой алгебры, — нейроны нашего мозга функционируют рационально. Совершенно так же, символические процессы высшего уровня, порождающие чувство красоты у нас в мозгу, полностью рациональны на безошибочно функционирующем низшем уровне; вся иррациональность, если таковая имеется, принадлежит высшему уровню и является эпифеноменом — следствием событий, происходящих на низшем уровне.
Попытаюсь проиллюстрировать ту же идею в ином контексте: представьте себе, что вы пытаетесь выбрать между тортами «Прага» и «Птичье молоко». Значит ли это, что ваши нейроны тоже колеблются и не могут решить, возбуждаться им или нет? Разумеется, нет. Ваши гастрономические колебания — это состояние высшего уровня, которое полностью зависит от возбуждения тысяч нейронов определенным образом. Это кажется нелепым, но если подумать, становится ясно, что это только естественно. Однако я думаю, что было бы справедливо сказать, что почти вся путаница насчет мозгов и компьютеров происходит именно из-за этого элементарного смешения уровней.
Нет причин полагать, что безошибочное функционирование компьютерной аппаратуры не может породить таких сложных состояний высшего уровня как замешательство, забывчивость или восприятие красоты. Для этого было бы необходимо наличие множества подсистем, взаимодействующих друг с другом согласно сложной «логике». Явным следствием этого было бы логичное или нелогичное поведение, опирающееся на скрытый уровень надежной, безошибочной аппаратуры.

Рис. 109. Мозг рационален, разум может не быть таковым. (Рисунок автора.)
Этот тип различения между уровнями дает нам новые аргументы в споре с Лукасом. Он основывает свои рассуждения на идее, что Гёделева Теорема по определению приложима к машинам. На самом деле, Лукас делает еще более выразительное заявление:
Читать дальшеИнтервал:
Закладка: