Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Название:ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Автор:
- Жанр:
- Издательство:Издательский Дом «Бахрах-М», 2001.
- Год:2001
- Город:Самара
- ISBN:ISBN 5-94648-001-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В этот момент рассказчику пришлось покинуть счастливую парочку, так как ему срочно нужно было в банк. Он снова попал в те места только через несколько месяцев. Доблестный герой Ахилл все еще восседал на спине долготерпеливой Черепахи и писал в своем блокноте, который уже почти заполнился, а Черепаха говорила: «Записали последний шаг? Если я не сбилась со счета, у нас набралось уже 1001. Осталось всего каких-нибудь несколько миллионов… Зато подумайте только, какую ОГРОМНУЮ пользу наша беседа принесет Логикам Девятнадцатого Века!»
«Не думаю, что кто-нибудь из них сможет разобраться во всей этой чепухе», — отвечал усталый воин, в отчаянии пряча лицо в ладонях. «Сделайте милость, разрешите мне позаимствовать каламбур, который в девятнадцатом столетии придумает знакомая Алисы, ваша кузина Черепаха Квази, и переименовать вас в г-жу Чепупаху.»
«Ахиллес, бедняга, вы видно совсем устали, такую вы несете ахиллею… по этому поводу, я, пожалуй, позволю себе каламбур, до которого моя кузина Черепаха Квази не додумается, и переименую вас в Ахинесса.»
ГЛАВА II: Содержание и форма в математике
ЭТА ДВУХГОЛОСНАЯ ИНВЕНЦИЯ оказалась для моих героев вдохновляющей идеей. Так же, как Льюис Кэрролл позволил себе вольное обращение с Ахиллом и Черепахой Зенона, я позволил себе некоторые вольности с Ахиллом и Черепахой Льюиса Кэрролла. У Кэрролла одни и те же события повторяются снова и снова, каждый раз на более высоком уровне; это замечательная аналогия Баховского Естественно Растущего Канона. Если лишить диалог Кэрролла его блестящего остроумия, в нем останется глубокая философская проблема: подчиняются ли слова и мысли каким-либо формальным правилам? Это и есть основной вопрос, на который пытается ответить моя книга.
В этой и следующей главах мы рассмотрим несколько новых формальных систем; это поможет нам лучше понять саму идею формальной системы . Когда вы дочитаете эти две главы до конца, у вас должно сложиться неплохое представление о мощности формальных систем и о том, почему они представляют интерес для математиков и логиков.
В этой главе мы будем рассматривать систему pr. Ни математики, ни физики ею не заинтересуются; признаться, она — всего лишь мое собственное изобретение. Система pr интересна лишь постольку, поскольку она хорошо иллюстрирует многие идеи, играющие в этой книге важную роль. В этой системе три символа:
p r -— буквы pи rи тире.
Система prимеет бесконечное множество аксиом. Поскольку мы не можем записать их все, мы должны придумать какой-нибудь метод их описания. На самом деле, нам нужно не просто описание этих аксиом; нам нужен способ, позволяющий узнать, является ли данная последовательность символов аксиомой. Простое описание аксиом охарактеризовало бы их полностью, но недостаточно сильно; именно в этом была проблема с описанием теорем системы MIU.
Мы не собираемся возиться в течении неопределенного — возможно, бесконечного — времени, чтобы определить, является ли некая строчка символов аксиомой. Нам необходимо такое определение аксиом, которое предоставит в наше распоряжение надежный алгоритм разрешения, устанавливающий аксиоматичность любой строчки, состоящей из символов p, rи тире.
ОПРЕДЕЛЕНИЕ: x p-r x -является аксиомой, когда x состоит только из тире.
Обратите внимание, что каждый из этих двух x -ов замещает одинаковое число тире. Например, --p-r--- является аксиомой. Само выражение x p-r x -, разумеется, не аксиома, так как x не принадлежит системе pr; оно, скорее, походит на форму, в которой отливаются все аксиомы данной системы. Такая «форма» называется схемой аксиом.
Система prимеет только одно правило вывода:
ПРАВИЛО: Пусть x , у и z — строчки, состоящие только из тире. Пусть x p y r z является теоремой. Тогда x p y -r z -также будет теоремой.
Пусть, например, x будет « --», у — « ---»и z — « -». Правило говорит нам:
Если --p---r-является теоремой, то --p----r--также будет теоремой.
Это утверждение типично для правил вывода: оно устанавливает связь между двумя строчками, не сообщая нам ничего о том, является ли каждая из них по отдельности теоремой.
Очень полезное упражнение — попытаться найти разрешающий алгоритм для теорем системы pr. Это нетрудно — после нескольких попыток вы, скорее всего, найдете решение. Попробуйте!
Надеюсь, что вы уже попытались найти решение. Во-первых, хотя это и кажется очевидным, я хотел бы заметить, что каждая теорема системы prимеет три отдельных группы тире, и что разделяющими элементами являются pи r, именно в таком порядке. (Это можно доказать, основываясь на аргументах «наследственности», так же, как мы смогли доказать, что теоремы системы MIUвсегда должны начинаться с М.) Это означает, что уже сама форма такой строчки как --p--p--p--r-------- исключает ее из числа теорем.
Читатель может подумать, что, подчеркивая фразу «уже сама форма», автор поступает довольно глупо: что еще может быть в такой строчке, кроме формы? Что, кроме ее формы, может играть какую-либо роль в определении особенностей данной строчки? Совершенно ясно, что ничего больше! Однако имейте в виду, читатель, что по мере того, как мы будем углубляться в обсуждение формальных систем, понятие «формы» будет становиться все сложнее и абстрактнее и нам придется все чаще задумываться о значении самого этого слова. Во всяком случае, мы будем называть «правильно составленной строчкой» любую строчку следующей структуры: группа тире, одно p,вторая группа тире, одно r, завершающая группа тире.
Вернемся к алгоритму разрешения. Для того, чтобы данная строчка считалась теоремой, первые две группы тире в сумме должны давать третью группу тире. Так, например, --p--r---- является теоремой, так как 2 плюс 2 равняется 4, в то время как --p--r-теоремой не является, так как 2 плюс 2 не равняется 1. Чтобы понять, почему этот критерий верен, взгляните сначала на схему аксиом. Очевидно, она производит только такие аксиомы, которые удовлетворяют критерию сложения. Теперь обратитесь к правилу вывода. Если первая строчка удовлетворяет критерию сложения, то же условие необходимо будет выполняться и во второй строчке. И, наоборот, если первая строчка не удовлетворяет критерию сложения, не будет удовлетворять ему и вторая строчка. Это правило превращает критерий сложения в наследственное качество теорем; каждая теорема передает его своим «отпрыскам». Это показывает, почему критерий сложения верен.
Читать дальшеИнтервал:
Закладка: