Морис Клайн - Математика. Утрата определенности.

Тут можно читать онлайн Морис Клайн - Математика. Утрата определенности. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1984. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика. Утрата определенности.
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1984
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Морис Клайн - Математика. Утрата определенности. краткое содержание

Математика. Утрата определенности. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Морис Клайн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Иррациональные числа нашли широкое применение и в связи с одним из новых - фото 28

Иррациональные числа нашли широкое применение и в связи с одним из новых достижений математики эпохи Возрождения — логарифмами. Логарифмы положительных чисел были изобретены в конце XVI в. Джоном Непером {68}(1550-1617) для той самой цели, для которой они с тех пор и употребляются, — для ускорения арифметических вычислений. И хотя логарифмы большинства положительных чисел иррациональны (а предложенный Непером метод вычисления логарифмов основан на свободном обращении с иррациональными числами), все математики приветствовали полезное изобретение, избавившее их от излишнего труда.

Вычисления с иррациональностями производились без каких-либо затруднений, но кое-кого все же беспокоила проблема, можно ли считать иррациональные числа «настоящими». Так, Штифель в своем главном труде «Полная арифметика» ( Arithmetica integra, 1544), посвященном арифметике и алгебре, вторя Евклиду, высказывал предположение, что величины (геометрическая теория Евклида) отличны от чисел; однако, следуя духу достижений своего времени, он выражал иррациональные числа в десятичной системе. Штифеля беспокоило, что для записи иррационального вдела в десятичной системе требуется бесконечно много знаков. С одной стороны, рассуждал он,

так как при доказательстве [свойств] геометрических фигур иррациональные числа заменяют рациональные всякий раз, когда те отказываются служить нам, и доказывают все то, что не могли бы доказать те… приходится признать, что они [иррациональные числа] являются истинными числами. К тому же нас вынуждают и результаты, проистекающие из их применения, которые нельзя не признать подлинными, достоверными и незыблемыми. С другой стороны, иные соображения заставляют нас отрицать, что иррациональные числа вообще являются числами. Такое сомнение подкрепляется тем, что если мы попытаемся записать иррациональные числа в десятичной форме… то обнаружим, что они непрестанно ускользают от нас и ни одно из них не удается постичь точно… Число же, которому в силу его природы недостает точности, не может быть названо истинным числом… Следовательно, подобно тому как не является числом бесконечность, иррациональное число также не является истинным числом, а как бы скрыто от нас в облаке бесконечности.

Далее Штифель добавляет, что настоящие числа — это либо целые числа, либо дроби, а поскольку иррациональные числа не принадлежат ни к тем, ни к другим, их нельзя считать настоящими числами. Столетие спустя Паскаль и Барроу утверждали, что иррациональные числа не более чем символы, не существующие независимо от геометрических величин, и что логика арифметических операций, производимых над иррациональными числами, должна быть обоснована с помощью теории величин Евклида, хоть эта теория и не в полной мере отвечала поставленной так задаче. {69}

Высказывались и иные утверждения: по мнению некоторых европейских математиков, иррациональные числа с полным основанием можно было считать настоящими числами. Стевин провозгласил иррациональности числами и построил ряд все более точных приближений их с помощью рациональных чисел. Джон Валлис (1616-1703) в своей «Алгебре» (1685) также признал, что иррациональные числа являются числами в полном смысле этого слова. Однако ни Стевин, ни Валлис не привели никаких логических аргументов в подтверждение своего мнения.

Более того, когда Декарт в своей «Геометрии» (1637) и Ферма в рукописи 1629 г. разработали аналитическую геометрию, ни тот, ни другой не имели ясного представления об иррациональных числах. Тем не менее оба исходили из предположения, что между всеми положительными действительными числами и точками на прямой существует взаимно-однозначное соответствие, т.е. что расстояние от любой точки на прямой до какой-то точки, принятой за начало отсчета, может быть выражено числом. Так как многие из чисел при этом оказывались бы иррациональными, Декарт и Ферма тем самым неявно допускали существование иррациональных чисел, несмотря на то что тогда оно еще никак не было логически обосновано.

Европейцам пришлось столкнуться и с проблемой отрицательных чисел. Эти числа стали известны в Европе из арабских текстов, но большинство математиков XVI-XVII вв. не считали отрицательные числа «настоящими» или утверждали, что отрицательные числа не могут быть корнями уравнений. Никола Шюке [1445(?)-1500(?)] в XV в. и Штифель в XVI в. заявляли, что отрицательные числа лишены всякого смысла. Кардано включал отрицательные величины в число корней рассматриваемых им уравнений, но полагал, что отрицательные корни — это просто символы, не имеющие реального смысла. Отрицательные корни уравнений Кардано называл фиктивными и противопоставлял их действительным, т.е. положительным, корням. Виет полностью отвергал отрицательные числа. Декарт принимал их лишь с определенными оговорками. Отрицательные корни уравнений Декарт называл ложными на том основании, что они якобы представляют числа, которые меньше, чем ничто. Однако Декарту удалось показать, как, исходя из любого уравнения, можно построить другое уравнение, корни которого больше корней исходного на любую заданную величину. Тем самым Декарт указал способ, позволяющий преобразовать уравнение с отрицательными корнями в уравнение с положительными корнями. «Фиктивные» корни при таком преобразовании переходили в действительные, и поэтому Декарт неохотно смирился с отрицательными числами, но сомнения и тревоги так и не оставили его. {70}Паскаль считал, например, вычитание числа 4 из 0 операцией, лишенной всякого смысла. В «Мыслях» Паскаля есть выразительное признание: «Я знаю людей, которые никак не могут понять, что если из нуля вычесть четыре, то получится нуль».

Интересный довод против отрицательных чисел выдвинул близкий друг Паскаля теолог и математик Антуан Арно (1612-1697). Арно усомнился в том, что −1:1 = 1:−1. Как может выполняться такое равенство, спрашивал он, если −1 меньше, чем 1? Ведь меньшее число не может относиться к большему так же, как большее к меньшему. Лейбниц, признав правильность возражения Арно, указал, что такого рода пропорции вполне допустимо использовать в вычислениях, ибо по форме они правильны, и сравнил действия, производимые над отрицательными числами, с действиями, производимыми над мнимыми величинами, введенными незадолго до этого. Тем не менее Лейбниц затемнил существо дела, предложив называть мнимыми (несуществующими) все величины, не имеющие логарифма. По мнению Лейбница, число −1 не существует, так как положительные логарифмы соответствуют числам, большим 1, а отрицательные логарифмы (!) соответствуют числам, заключенным между 0 и 1. Следовательно, для отрицательных чисел логарифмов просто «не хватает». Действительно, если бы нашлось какое-нибудь число, соответствующее log(−1), то половина его, как следует из теории логарифмов, соответствовала бы log√−1, a √−1 заведомо не имеет логарифма.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика. Утрата определенности. отзывы


Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x