Морис Клайн - Математика. Утрата определенности.
- Название:Математика. Утрата определенности.
- Автор:
- Жанр:
- Издательство:Мир
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Морис Клайн - Математика. Утрата определенности. краткое содержание
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вопрос о том, следует ли считать бесконечные множества актуально или потенциально бесконечными, имеет длинную историю. Аристотель в своей «Физике» ([6], т. 3, с. 59-221) утверждал: «Остается альтернатива, согласно которой бесконечное имеет потенциальное существование… Актуально бесконечное не существует». По мнению Аристотеля, актуальная бесконечность не нужна математике. Греки вообще считали бесконечность недопустимым понятием. Бесконечность — это нечто безграничное и неопределенное. Последующие дискуссии нередко лишь затемняли существо дела, так как математики говорили о бесконечности как о числе, не давая явного определения понятия бесконечности и не указывая свойства этого понятия. Так, Эйлер довольно легкомысленно утверждал в своей «Алгебре» (1770), что 1/0 — бесконечность, хотя и не счел нужным определить, что такое бесконечность, а лишь ввел для нее обозначение ∞. Без тени сомнения Эйлер утверждал также, что 2/0 вдвое больше, чем 1/0. Еще больше недоразумений возникало в тех случаях, когда речь шла об использовании символа ∞ для записи пределов при n, стремящемся к бесконечности (например, для записи того, что предел 1/ n при n, стремящемся к ∞, равен 0). В подобных случаях символ ∞ означает лишь, что n неограниченно возрастает и может принимать сколь угодно большие (но конечные!) значения, при которых разность между 0 и 1/ n становится сколь угодно малой. Необходимость в обращении к актуальной бесконечности при таких предельных переходах не возникает.
Большинство математиков (Галилей, Лейбниц, Коши, Гаусс и другие) отчетливо понимали различие между потенциально бесконечными и актуально бесконечными множествами и исключали актуально бесконечные множества из рассмотрения. Если им приходилось, например, говорить о множестве всех рациональных чисел, то они отказывались приписывать этому множеству число — его мощность. Декарт утверждал: «Бесконечность распознаваема, но не познаваема». Гаусс писал в 1831 г. Шумахеру: «В математике бесконечную величину никогда нельзя использовать как нечто окончательное; бесконечность — не более чем façon de parle [манера выражаться], означающая предел, к которому стремятся одни величины, когда другие бесконечно убывают».
Таким образом, введя актуально бесконечные множества, Кантор выступил против традиционных представлений о бесконечности, разделяемых великими математиками прошлого. Свою позицию Кантор пытался аргументировать ссылкой на то, что потенциальная бесконечность в действительности зависит от логически предшествующей ей актуальной бесконечности. Кантор указывал также на то, что десятичные разложения иррациональных чисел, например числа √2, представляют собой актуально бесконечные множества, поскольку любой конечный отрезок такого разложения дает лишь конечное приближение к иррациональному числу. Сознавая, сколь резко он расходится во взглядах со своими предшественниками, Кантор с горечью признался в 1883 г.: «Я оказался в своего рода оппозиции к общепринятым взглядам на математическую бесконечность и к нередко отстаиваемым суждениям о природе числа».
В 1873 г. Кантор не только занялся изучением бесконечных множеств как «готовых» (т.е. реально существующих) сущностей, но и поставил задачу классифицировать актуально бесконечные множества ([15]*, [53]). Введенные Кантором определения позволяли сравнивать два актуально бесконечных множества и устанавливать, содержат ли они одинаковое, «число элементов» или нет. Основная идея Кантора сводилась к установлению взаимно-однозначного соответствия между множествами. Так, 5 книгам и 5 шарам можно сопоставить одно и то же число 5 потому, что книги и шары можно разбить на пары, каждая из которых содержит по одной, и только одной книге, и по одному, и только одному, шару. Аналогичное разбиение на пары Кантор применил, устанавливая взаимно-однозначное соответствие между элементами бесконечных множеств. Например, взаимно-однозначное соответствие между положительными целыми числами и четными числами можно установить, объединив те и другие в пары:
1 2 3 4 5 …,
2 4 6 8 10 …
Каждому целому числу при этом соответствует ровно одно четное число (равное удвоенному целому), а каждому четному числу соответствует ровно одно целое число (равное половине четного). Следовательно, в каждом из двух бесконечных множеств — множестве целых чисел и множестве четных чисел — элементов столько же, сколько в другом множестве. Установленное соответствие (то, что все множество целых чисел можно поставить во взаимно-однозначное соответствие с частью этого множества) казалось неразумным предшественникам Кантора {99}и заставляло их отвергать все попытки рассмотрения бесконечных множеств. Но это не испугало Кантора. С присущей ему проницательностью он понял, что бесконечные множества могут подчиняться новым законам, не применимым к конечным совокупностям или множествам, подобно тому как, например, кватернионы подчиняются законам, не применимым к вещественным числам. И Кантор определил бесконечное множество как такое множество, которое можно поставить во взаимно-однозначное соответствие со своим собственным (т.е. отличным от всего множества) подмножеством.
Идея взаимно-однозначного соответствия привела Кантора к неожиданному результату: он показал, что можно установить взаимно-однозначное соответствие между точками прямой и точками плоскости (и даже точками n- мерного пространства). По поводу этого результата он писал в 1877 г. своему другу Рихарду Дедекинду: «Я вижу это, но не могу в это поверить». Тем не менее Кантор поверил в правильность полученного им результата и, следуя принципу взаимно-однозначного соответствия, установил для бесконечных множеств отношение эквивалентности, или равенства («равномощности» двух множеств).
Кантор выяснил также, в каком смысле следует понимать, что одно бесконечное множество большедругого {100}: если множество A можно поставить во взаимно-однозначное соответствие с частью или собственным подмножеством множества B, а множество B невозможно поставить во взаимно-однозначное соответствие с множеством A или собственным подмножеством множества A, то множество B по определению больше множества A. Это определение по существу обобщает на бесконечные множества то, что непосредственно очевидно в случае конечных множеств. Если у нас имеется 5 шаров и 7 книг, то между шарами и частью книг можно установить взаимно-однозначное соответствие, но невозможно установить взаимно-однозначное соответствие между всеми книгами и всеми шарами или частью шаров. Используя свои определения равенства и неравенства бесконечных множеств, Кантор сумел получить поистине удивительный результат: множество целых чисел равно («равномощно») множеству рациональных чисел (всех положительных и отрицательных целых чисел и дробей), но меньше множества всех вещественных (рациональных и иррациональных) чисел.
Читать дальшеИнтервал:
Закладка: