Морис Клайн - Математика. Поиск истины.

Тут можно читать онлайн Морис Клайн - Математика. Поиск истины. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1988. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика. Поиск истины.
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1988
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Морис Клайн - Математика. Поиск истины. краткое содержание

Математика. Поиск истины. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.

Предназначена для читателей, интересующихся историей и методологией науки.

Математика. Поиск истины. - читать онлайн бесплатно полную версию (весь текст целиком)

Математика. Поиск истины. - читать книгу онлайн бесплатно, автор Морис Клайн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Пифагорейцам принадлежит идея сведения музыкальных интервалов к простым соотношениям между числами; они пришли к этой мысли, совершив два открытия. Первое — что высота звука, издаваемого колеблющейся струной, зависит от ее длины, и второе — что гармонические созвучия издают струны, длины которых относятся между собой, как некоторые целые числа. Например, гармоническое созвучие возникает, если заставить колебаться две одинаково натянутые струны, одна из которых вдвое длиннее другой. Музыкальный интервал между издаваемыми такими струнами тонами ныне называется октавой. Другое гармоническое созвучие создают две струны, длины которых относятся, как три к двум: в этом случае тон, издаваемый более короткой струной, на квинту выше тона более длинной. Длины любых двух струн, рождающих гармоническое созвучие, действительно относятся между собой, как целые числа.

Движения планет пифагорейцы также сводили к числовым соотношениям. По их представлениям, тела, перемещаясь в пространстве, производят звуки, причем быстро движущееся тело издает более высокий звук, чем движущееся медленно. Возможно, такого рода идеи были навеяны свистящим звуком, который возникает при раскручивании веревки с тяжелым предметом на конце. Согласно пифагорейской астрономии, чем больше расстояние от планеты до Земли, тем быстрее планета движется. Следовательно, звуки, издаваемые планетами, изменяются в зависимости от их удаленности от Земли, и все звуки подчиняются определенной гармонии. Как и всякая гармония, такая «музыка сфер» может быть сведена к чисто числовым соотношениям. Но тогда и движения планет можно свести к числовым соотношениям.

Другие характерные особенности природы пифагорейцы также сводили к числу. Особенно высоко они ценили числа 1, 2, 3, 4, образующие четверицу , или тетрактис . По преданию, клятва пифагорейцев гласила: «Клянусь именем Тетрактис, ниспосланной нашим душам. В ней источник и корни вечно цветущей природы». Природа, по мнению пифагорейцев, состояла из «четверок» — четырех геометрических элементов (точки, линии, поверхности и тела) и четырех материальных элементов (земли, воздуха, огня и воды), — игравших важную роль в философии Платона.

Четыре числа, входившие в тетрактис, в сумме давали десять, поэтому число «десять» пифагорейцы провозгласили идеальным числом и усматривали в нем символ всего мира. Но, так как число «десять» идеально, в небесах должны быть десять тел. Чтобы получить нужное число небесных тел, пифагорейцы придумали Центральный огонь, вокруг которого обращаются Земля, Солнце, Луна и пять известных тогда планет, а также Антиземлю, лежащую по другую сторону от Центрального огня. Ни Центральный огонь, ни Антиземля невидимы, так как мы обитаем на той части Земли, которая обращена в противоположную от них сторону. Так пифагорейцы построили астрономическую теорию, основанную на числовых соотношениях.

Приведенные примеры позволят нам понять высказывание, приписываемое знаменитому пифагорейцу Филолаю, жившему в V в. до н.э.:

Если бы ни число и его природа, ничто существовавшее нельзя было бы постичь ни само по себе, ни в его отношении к другим вещам… Мощь числа проявляется, как нетрудно заметить, не только в деяниях демонов, и богов, но и во всех поступках и помыслах людей, во всех ремеслах и музыке.

([13], с. 21.)

Натурфилософию пифагорейцев трудно назвать состоятельной. Не удалось им продвинуться сколько-нибудь далеко ни в одной из областей естествознания. Их теории с полным основанием можно назвать поверхностными. Тем не менее то ли благоприятное стечение обстоятельств, то ли гениальное прозрение позволили пифагорейцам создать два учения, первостепенное значение которых обнаружилось лишь позднее. Первое — что природа устроена на математических принципах и второе — что числовые соотношения суть основа, единая сущность и инструмент познания порядка в природе.

Атомисты Левкипп (ок. 440 до н.э.) и Демокрит (ок. 460 — ок. 370 до н.э.) также отводили математике немаловажную роль. Они считали, что вся материя состоит из атомов, различающихся положением, размерами и формой. Эти свойства атомов физически реальны. Все остальные свойства, такие как вкус, теплота и цвет, присущи не самим атомам, а обусловлены воздействием атомов на воспринимающего субъекта. Такое чувственное знание ненадежно, так как меняется от одного воспринимающего субъекта к другому. Подобно пифагорейцам, атомисты утверждали, что реальность, лежащая в основе постоянно меняющихся свойств реального мира, может быть выражена на языке математики. Все происходящее в этом мире строго предопределено математическими законами.

Первым из греков, кому мы обязаны наиболее существенным продвижением в математическом исследовании природы, был Платон (427-347 до н.э.). Он не только воспринял некоторые учения пифагорейцев, но и был выдающимся философом, чьи идеи во многом определяли развитие мысли в Греции достопамятного IV в. до н.э. Платон основал в Афинах Академию, ставшую центром притяжения мыслителей его времени и просуществовавшую девять веков. Свои взгляды Платон особенно отчетливо и ясно изложил в диалоге «Филеб». В вводной главе «Историческая ретроспектива» мы упоминали о том, что реальный мир, согласно Платону, построен на математических принципах. То, что воспринимают наши органы чувств, не более чем несовершенное представление реального мира. Реальность и рациональность физического мира может быть постигнута только с помощью математики, ибо «Бог вечно геометризует». Платон пошел дальше, чем пифагорейцы: он стремился не только познать природу, но и выйти за ее пределы, чтобы постичь идеальный мир, построенный на математических принципах, который, по мысли Платона, и есть подлинная реальность. Чувственное, преходящее и несовершенное подлежало замене на абстрактное, вечное и совершенное. Платон полагал, что несколько тонких наблюдений внешнего мира позволят составить представление об основных идеях, которые затем могут быть развиты разумом. Необходимость в дальнейших наблюдениях отпадала. После тога как исходные наблюдения произведены, природа должна быть полностью заменена математикой. Платон подверг критике пифагорейцев за то, что они, исследовав числа, в которых запечатлена гармония музыкальных созвучий, так и не дошли до изучения естественной гармонии самих чисел. Для Платона математика была не только посредником, между идеями и данными чувственного опыта: математический порядок он считал точным отражением самой сути реальности. Платон заложил также основы дедуктивно-аксиоматического метода, который мы кратко обсудим. В этом методе Платон видел идеальный способ систематизации уже накопленного знания и получения нового.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика. Поиск истины. отзывы


Отзывы читателей о книге Математика. Поиск истины., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x