Морис Клайн - Математика. Поиск истины.

Тут можно читать онлайн Морис Клайн - Математика. Поиск истины. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1988. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика. Поиск истины.
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1988
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Морис Клайн - Математика. Поиск истины. краткое содержание

Математика. Поиск истины. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.

Предназначена для читателей, интересующихся историей и методологией науки.

Математика. Поиск истины. - читать онлайн бесплатно полную версию (весь текст целиком)

Математика. Поиск истины. - читать книгу онлайн бесплатно, автор Морис Клайн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Расстояние от Земли до Луны Птолемей оценил, сравнивая результаты своих наблюдений с положениями Луны, вычисленными по его же теории, и получил, что среднее расстояние от Земли до Луны составляет 29,5 земного радиуса. Воспользовавшись доводами (четырехвековой давности) Аристарха Самосского, Птолемей попытался оценить расстояние до Солнца, но, допустив грубую ошибку, получил величину, вдвое меньшую, чем у Аристарха, и в десять раз меньшую истинного расстояния. Однако на протяжении последующих пятнадцати столетий никто не уточнял оценок Птолемея. В книгах VII и VIII «Альмагеста» Птолемей исправил и дополнил каталог неподвижных звезд, составленный Гиппархом, увеличив число включенных в него звезд от 850 до 1022. Птолемей разделил звезды на шесть классов по их «величине». В современной астрономии под звездной величиной понимают не размеры, а видимую яркость, но в античности принято было считать, что все звезды одинаково удалены от Земли и, следовательно, яркость их просто пропорциональна видимым размерам.

В книге IX Птолемей излагал свое высшее и единственное в своем роде достижение — первое в истории человечества полное и строгое описание причудливых и запутанных движений планет. Исходным пунктом всех его построений была неоспоримая первая аксиома небесной геометрии, которую он сформулировал еще раз:

Перед нами стоит задача доказать, что, как в случае пяти планет, посредством равномерных круговых движений (свободных от каких бы то ни было несоразмерностей и беспорядков).

Трудно указать в истории науки еще какой-нибудь априорный принцип, который бы — властвовал над умами людей столь прочно и продолжительно.

В первом приближении Птолемей полагает, что движения всех планет происходят в плоскости эклиптики, т.е. к плоскости круговой орбиты Солнца, которое Птолемей изображает медленно вращающимся, что порождает предварение равноденствий. Однако простая схема, состоящая из эпицикла, центр которого движется по деференту, оказывается недостаточной для описания движения планет, ибо из нее вопреки наблюдениям следует, что дуги, проходимые в попятном движении, равны по длине и расположены равномерно. Птолемей устраняет эту излишнюю симметрию, постулируя эпицикл, центр которого движется по эксцентрику.

В рамках фундаментальной схемы система эксцентрик-эпицикл может быть сохранена, только если постулировать, как показал Птолемей, что эпицикл каждой планеты движется равномерно не относительно центра деферента C, а относительно другой точки Q, получившей название экванта (рис. 21).

Рис 21 Земля находится в точке E и EC CQ Планета движется по эпициклу в - фото 23

Рис. 21.

Земля находится в точке E, и EC = CQ . Планета движется по эпициклу в том же направлении, в каком центр эпицикла движется по деференту (в отличие от моделей движения Солнца и Луны, где движение по эпициклу происходит в направлении, противоположном тому, в котором центр эпицикла движется по деференту). Попятные движения происходят тогда, когда планета находится в части эпицикла, ближайшей к Земле. Только в случае Меркурия кинематическую схему пришлось усложнить по аналогии со схемой, предложенной Птолемеем для Луны: центр деферента Меркурия сам описывает небольшую окружность, вследствие чего небольшой по своим размерам эпицикл планеты периодически приближается к Земле и удаляется от нее. Каждая из внутренних планет (Меркурий и Венера) описывает эпицикл за один планетный «год». Центр эпицикла совершает один оборот по деференту за один земной год. У внешних планет время распределено наоборот: период, за который центр эпицикла проходит эксцентрик, равен тому, что сейчас мы называем периодом обращения планеты вокруг Солнца, а один оборот по эпициклу происходит за время, соответствующее, по нашим представлениям, периоду обращения Земли вокруг Солнца. Каждый эпицикл наклонен по отношению к своему деференту так, чтобы плоскость эпицикла была параллельна эклиптике.

«Да не сочтет никто при виде трудности наших построений сложными сами гипотезы», — взывал Птолемей, хотя читатель, у которого голова шла кругом от нагромождения эпициклов и деферентов, скорее всего склонен был думать иначе. Однако прогресс науки отнюдь не гарантирует, что в природе все устроено просто.

С нашей точки зрения эквант — мастерский штрих Птолемея, оригинальная и весьма удачная схема, своего рода предтеча кеплеровских эллипсов. Однако некоторые астрономы последующих поколений; критически оценивая наследие Птолемея, усматривали во введении экванта некий компромисс — попытку увязать наблюдаемые явления со «священным первым принципом» небесных движений, требовавшим равномерности движения только относительно центра окружности. Эквант был в глазах некоторых астрономов тем самым неслыханным нарушением традиций, которое позволило Копернику, «двинуть Землю».

В дополнение к блестящим кинематическим схемам движений Луны, Солнца и планет Птолемей расположил все светила в порядке их удаленности от Земли (правда, здесь не обошлось без ошибок) и привел оценки размеров небесных тел, хотя и сознавал, что они грубы, поскольку в те времена не было хороших астрономических инструментов.

Если оставить в стороне философские возражения, то геометрия, точнее кинематика, «Альмагеста» была просто великолепна. Однако нетрудно представить, что пытливый ум Птолемея стремился дополнить явно надуманные круги соображениями относительно реальной, невымышленной небесной материи. Извечное различие между обобщающей математической теорией и «осязаемой» реальностью, описательной работой астронома и разъяснительной миссией физика вряд ли стирались в ту далекую эпоху, на ранней стадии построения геометрических моделей. В действительности это различие становилось все более резким, ибо математика, как бы требовавшая введения некруговых орбит небесных тел и центров вращения, не совпадающих с Землей, существенно расходилась, казалось бы с надежными принципами аристотелевской физики. Многие мыслители эллинской эпохи, интересовавшиеся проблемами мироздания, попросту игнорировали физику Аристотеля, но все возраставшая сложность геометрических построений не могла не пробуждать у некоторых из них все более острое ощущение оторванности от реальности и, быть может, даже своего рода «ностальгию по утерянному раю» аристотелевской простоты.

В определенных кругах Птолемей пользовался «дурной репутацией». Иных читателей «Альмагеста» раздражал реальный или вымышленный дух тяжеловесного педантизма и громоздкие геометрические построения, наделившие небеса сложной системой движений

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика. Поиск истины. отзывы


Отзывы читателей о книге Математика. Поиск истины., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x