Морис Клайн - Математика. Поиск истины.
- Название:Математика. Поиск истины.
- Автор:
- Жанр:
- Издательство:Мир
- Год:1988
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Морис Клайн - Математика. Поиск истины. краткое содержание
Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.
Предназначена для читателей, интересующихся историей и методологией науки.
Математика. Поиск истины. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Наша наука о природе — это наши представления о ней и описание ее. Наука стоит между человечеством и природой. Но в свете квантовой теории элементарные частицы не реальны в том смысле, как реальны камни или деревья, а представляются абстракциями, почерпнутыми из реальных результатов наблюдений. Но коль скоро невозможно приписать элементарным частицам существование в самом «подлинном» смысле, рассматривать материю как подлинно реальную становится труднее.
Хотя Блез Паскаль (1623-1662) был убежден в истинности математических законов природы, он все же так охарактеризовал применимость математики: «Истина — слишком тонкая материя, а наши инструменты слишком тупы, чтобы ими можно было прикоснуться к истине, не повредив ее. Достигнув истины, они сминают ее и отклоняются в сторону, скорее ложную, нежели истинную» ([13], с. 374).
Другие пошли еще дальше. П.У. Бриджмен в книге «Логика современной физики» (1946) утверждал: «Чистейший трюизм, истинность которого становится очевидной при самом поверхностном взгляде, состоит в том, что математика изобретена человеком». Но в таком случае математика, как и все, созданное человеком, подвержена ошибкам. Наши достижения в физической теории сводятся к набору математических соотношений, согласующихся с наблюдаемыми явлениями, и предсказаниям, касающимся физических явлений, часть которых, как, например, электромагнитное излучение, недоступна непосредственному наблюдению. Абстрактные рассуждения позволяют нам выйти за рамки представлений, основанных на чувственном восприятии, хотя это не означает, что мы в состоянии полностью освободиться от своего чувственного опыта.
Различные рассуждения на тему о том, в какой степени математика отражает и представляет истину о реальном физическом мире, следует отличать от многочисленных утверждений об истинности самой математики и ее объективной реальности, но не обязательно касающихся отношения математики к реальному миру. Например, Платон в диалоге «Менон» утверждал, что математические конструкции не зависят от опыта и даже предшествуют ему. В существовании математики Платон видел в действительности доказательство существования бессмертной души, ибо, поскольку теоремы невозможно получить из опыта, они должны сопровождать душу при возвращении к истинному бытию. Формулировка новой теоремы по Платону — это акт воспроизведения того, что хранилось в памяти.
Примерно до начала XIX в. подобных взглядов придерживались практически все математики, а некоторые представители математической науки разделяли их и позднее. Уильям Р. Гамильтон (1805-1865) — хотя именно он изобрел тот самый объект (кватернионы), который поставил под сомнение истинность арифметики, — в своих взглядах во многом сходился с Декартом:
Такие чисто математические науки, как алгебра и геометрия, являются науками чистого разума, не подкрепляемыми опытом и не получающими от него помощи, изолированными или могущими быть изолированными от всех внешних и случайных явлений… Вместе с тем это идеи, рожденные внутри нас, обладание которыми в сколько-нибудь ощутимой степени есть следствие нашей врожденной способности, проявления человеческого начала.
([13], с. 371.)Один из ведущих алгебраистов XIX в. Артур Кэли, выступая с докладом перед Британской ассоциацией поощрения наук (1883), заявил, что «мы… обладаем априорными познаниями, не зависящими не только от того или иного опыта, но абсолютно от всякого опыта… Эти познания составляют вклад нашего разума в интерпретацию опыта».
В то время как одни ученые, подобно Гамильтону и Кэли, считали математику неотъемлемой частью человеческого разума, другим она представлялась существующей в мире вне человека. До начала XX в. существование единственного объективного мира математических истин, не зависящих от человека, ни у кого не вызвало сомнений, и это вполне понятно. Даже Гаусс, первым оценивший значение неевклидовой геометрии, был убежден в истинности понятий числа и математического анализа. Один из выдающихся французских математиков XX в. Жак Адамар (1865-1963) в книге «Исследование психологии процесса изобретения в области математики» утверждал: «Хотя истина еще не известна нам, она предсуществует и неизбежно подсказывает нам путь, которым мы должны следовать». На Международном математическом конгрессе в Болонье (1928) Давид Гильберт вопрошал: «Что было бы с истинностью наших знаний вообще и как обстояло бы дело с существованием и прогрессом науки, если бы даже в математике не было достоверной истины?» ([27], с. 388).
Примерно то же мнение выразил в своей книге «Апология математика» выдающийся аналитик Джефри Г. Харди (1877-1947): «Я убежден в том, что математическая реальность лежит вне нас и наша роль заключается в том, чтобы открывать или наблюдать ее, а теоремы, которые мы доказываем и столь пышно именуем нашими «творениями», в действительности представляют просто записи наших наблюдений». Математики только открывают понятия и их свойства.
Некоторые из приведенных выше высказываний принадлежат мыслителям XX в., не уделявшим особого внимания основаниям математики или вообще не занимавшимся ими. Удивительно, что даже по утверждениям признанных лидеров в области оснований математики, таких как Давид Гильберт, Алонзо Черч и члены группы Бурбаки (см. гл. XII), математические понятия и свойства существуют в некотором смысле объективно и познаваемы человеческим разумом. Таким образом, математическую истину открывают, а не изобретают; поэтому то, что изменяется и эволюционирует, есть не математика, а лишь человеческое знание математики.
Все эти рассуждения о существовании объективного единого «здания» математики ничего не говорят об истинном «местопребывании» ее. Все они сводятся к тому, что эта наука существует в некоем «сверхчеловеческом мире», каком-то воздушном замке, а математики только открывают ее положения. Аксиомы и теоремы не есть лишь творения одного человеческого разума; подобно богатствам, скрытым в земных недрах, их надлежит извлечь на поверхность, терпеливо раскапывая одну за другой. Существование их представляется столь же независящим от человека, как существование планет.
Что же такое математика: россыпь алмазов, скрытых в недрах реального мира и постепенно извлекаемых оттуда, или груда искусственных камней, созданных людьми, столь блестящих, что они своим блеском ослепили иных математиков, которые и без того переполнены гордостью за свои творения?
Другой, восходящей к Аристотелю точки зрения, согласно которой математика всецело является продуктом человеческой мысли, придерживается школа математиков, получивших название интуиционистов. В то время как одни утверждают, что истину гарантирует человеческий разум, другие полагают, что математика — создание склонного к заблуждениям человеческого разума, а не законченный свод знаний.
Читать дальшеИнтервал:
Закладка: