Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Название:Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Автор:
- Жанр:
- Издательство:Астрель: CORPUS
- Год:2010
- Город:Москва
- ISBN:978-5-271-25422-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
19
Правило знаков: минус умножить на минус дает плюс. Многие люди застревают в арифметике именно на этом месте. Они спрашивают: «Что это значит — умножить отрицательное на отрицательное?» Лучшее объяснение, какое мне приходилось встречать, принадлежит Мартину Гарднеру. Оно таково. Рассмотрим большую аудиторию, в которой находятся два типа людей: хорошие и плохие. Определим «сложение» как «приглашение людей в аудиторию». Определим «вычитание» как «удаление людей из аудитории». Определим «положительный» как «хороший» (имея в виду «хороших людей»), а «отрицательный» — как «плохой». Прибавление положительного числа означает, что в аудиторию приходит сколько-то хороших, что несомненно повышает в ней уровень «хорошести». Прибавление отрицательного числа означает, что в аудиторию приходят плохие парни, что понижает суммарный уровень «хорошести». Вычитание положительного числа означает, что наружу выходит сколько-то хороших, и суммарный уровень «хорошести» понижается. Вычитание отрицательного числа означает уход нескольких плохих, в результате чего суммарная «хорошесть» повышается. Таким образом, прибавление отрицательного числа — это все равно что вычитание положительного, а вычитание отрицательного — все равно что прибавление положительного. Умножение — это просто кратное сложение. Минус три умножить на минус пять? Попросим выйти пятерых плохих парней. Повторим это три раза. Результат? Суммарная «хорошесть» увеличилась на 15… (Когда я проверил это на шестилетнем Дэниеле Дербишире, он сказал: «А что, если ты попросишь плохих парней выйти, а они не выйдут ?» Философ-моралист в процессе становления!)
20
В отличие от распространенного американского обозначения log принятое у нас обозначение ln уже содержит напоминание не только о логарифме (буква l ), но и о том, что это натуральный (т.е. в некотором смысле естественный ) логарифм (буква n ). Заметим попутно, что «стандартные» функции типа логарифма записываются, как правило, без скобок вокруг аргумента, если этот аргумент достаточно прост (например, выражается одной буквой N или x ). (Примеч. перев.)
21
Георг был последним королем Ганновера. После сделанного в 1866 г. неудачного выбора, на чьей стороне воевать в австро-прусской войне, это королевство было в том же году поглощено Пруссией. Медаль, по-видимому, была отлита лишь к столетию Гаусса в 1877 г.
22
Среди разнообразных обстоятельств, позволявших герцогу притязать на славу, стоит, пожалуй, отметить, что он был отцом Каролины Брауншвейгской, вышедшей замуж за английского принца-регента. Брак оказался несчастным, и Каролина уехала из Англии. Но когда принц взошел на трон под именем Георга IV, она вернулась и предъявила свои права в качестве королевы. Это привело к незначительному конституционному кризису и одновременно к значительному увеселению публики по поводу стеснительного положения, в которое попал король, а также из-за довольно надменного характера его королевы, ее своеобразных личных привычек и вопиющих связей. Немалой популярностью пользовалась песенка:
Мадам, мы умоляем Вас
Оставить блуд, покинуть нас;
Но если выбирать одно —
Вы нас покиньте все равно.
Одна из теток герцога по материнской линии вышла замуж за императора Священной Римской империи и родила Марию-Терезию, великую императрицу Габсбургского дома. Другая вышла за Алексея Романова и стала матерью Петра II, номинального царя, в то самое время, когда Леонард Эйлер сходил с корабля в Санкт-Петербурге (раздел VI этой главы). Стоит только углубиться в генеалогию всех этих мелких германских правителей, как уже нельзя остановиться.
23
Не забыл ли я упомянуть, что, будучи из ряда вон выходящим математическим гением и первоклассным физиком, Гаусс был еще и блестящим астрономом, первым, кто правильно вычислил орбиту астероида?
24
После кометы Галлея — вторая комета, последовательные зафиксированные появления которой были после трудоемких вычислений связаны с одним и тем же космическим телом. (Примеч. перев.)
25
Чтобы узнать, является ли простым некоторое число N , надо просто делить его по очереди на числа 2, 3, 5, 7, … до тех пор, пока или одно из них не разделит N нацело, что будет означать, что N не простое, или… или что? Как узнать, когда остановиться? Ответ: остановиться надо, когда простое, на которое вы собрались разделить, оказывается больше, чем √N. Если, скажем, N равно 47, то √N = 6,85565…, так что надо проверить только делимость на 2, 3 и 5. Если ни одно из них не делит 47, то, значит, 47 — простое. Почему не надо проверять 7? Потому что 7×7 = 49, так что, если бы число 7 точно делило 47, частное было бы каким-то числом, меньшим 7. Аналогично, √701000 равен 837,2574. Последнее простое число ниже этого равно 829, а следующее простое выше этого есть 839. Если бы 839 делило 701000, то частное было бы числом, меньшим 839 — или некоторым простым, меньшим 839 (которое, следовательно, уже было проверено), или же составным, равным произведению еще меньших простых сомножителей…
26
Лежандр умер в нищете из-за того, что своей принципиальной позицией разгневал политических покровителей. Мне неловко, что я представил его здесь как вечно сердитого и слегка комического персонажа. Лежандр (1752-1833) был прекрасным математиком, одним из лучших во втором ряду, и в течение многих лет получал очень ценные результаты. Его «Элементы геометрии» были главным элементарным учебником по этому предмету в течение более чем столетия. Говорят, что именно эта книга побудила Эвариста Галуа — человека с трагической судьбой (от лица которого ведется повествование в романе Тома Пециниса «Французский математик») — выбрать своим занятием математику. Для нашего рассказа более существенно, что его книгу «Теория чисел» — переименованное третье издание упомянутых «Очерков» — школьный учитель дал почитать юноше Бернхарду Риману, который вернул ее менее чем через неделю со словами «Поистине прекрасная книга. Я теперь знаю ее наизусть». В книге было 900 страниц.
27
Русское издание: М.: Просвещение, 1979. (Примеч. перев.)
28
О числе Эйлера-Маскерони очень хорошо рассказано в главе 9 «Книги чисел», написанной Джоном Конуэем и Ричардом Гаем. Хотя я толком не описал его в данной книге, очень внимательный читатель заметит, как число Эйлера-Маскерони мелькнет за кадром в главе 5.
29
На математическом факультете того английского университета, где я учился, всем студентам старших курсов следовало пройти начальный курс немецкого. Тех, кто, как я, изучал немецкий в школе, отсылали в соседнюю Школу славянских и восточноевропейских исследований, чтобы учить русский, который наши наставники считали наиболее важным для математиков языком после немецкого. Вот вам наследие Петра.
Читать дальшеИнтервал:
Закладка: