Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Название:Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
- Автор:
- Жанр:
- Издательство:Астрель: CORPUS
- Год:2010
- Город:Москва
- ISBN:978-5-271-25422-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Рисунок 1.5.
Если продолжать действовать в том же духе и целиком использовать всю колоду, то за счет пятидесяти одной карты накопится нависание, равное
1/ 2+ 1/ 4+ 1/ 6+ 1/ 8+ 1/ 10+ 1/ 12+ 1/ 14+ 1/ 16+ … + 1/ 102
(самую нижнюю карту сдвигать бессмысленно). Такая сумма на самую толику меньше, чем 2,25940659073334. Таким образом, мы добились полного нависания более чем в две с четвертью длины! (Рис. 1.6.)

Рисунок 1.6.
Я был студентом, когда узнал про это. Дело было в летние каникулы, и я занимался подготовкой к следующему семестру, пытаясь несколько опередить программу. Свой вклад в оплату обучения я вносил, нанимаясь на время каникул рабочим на стройки — в Англии в те времена профсоюзы не сильно контролировали этот сектор. На следующий день после того, как я узнал про фокус с картами, мне предстояло в одиночку прибраться во внутренней части строящегося здания, где пачками хранились сотни больших квадратных потолочных панелей. Часа два я с забавлялся со стопкой из 52 панелей, пытаясь добиться нависания в две с четвертью панели. Проходивший мимо прораб застал меня глубоко погруженным в созерцание гигантской колышущейся башни, составленной из потолочных панелей, и он, я думаю, утвердился в своих худших подозрениях относительно целесообразности найма студентов.
Есть одна вещь, которую очень любят делать математики и которая оказывается очень плодотворной, — это экстраполировать , т.е. брать конкретную задачу и распространять ее выводы на более широкую область.
В нашей конкретной задаче у нас было 52 карты. Оказалось, что полное нависание составило более чем две с четвертью карты.
Но почему 52 карты? А если бы было больше? Сотня? Миллион? Триллион? А предположим, что у нас имелся бы неограниченный запас карт — какого максимального нависания мы смогли бы тогда добиться?
Сначала взглянем на нашу постепенно растущую формулу. При 52 картах полное нависание составило
1/ 2+ 1/ 4+ 1/ 6+ 1/ 8+ 1/ 10+ 1/ 12+ 1/ 14+ 1/ 16+ … + 1/ 102.
Поскольку все знаменатели здесь четные, можно вынести одну вторую за скобки и переписать в виде
1/ 2∙(1 + 1/ 2+ 1/ 3+ 1/ 4+ 1/ 5+ 1/ 6+ 1/ 7+ 1/ 8+ … + 1/ 51).
Если бы у нас была сотня карт, то полное нависание составляло бы
1/ 2∙(1 + 1/ 2+ 1/ 3+ 1/ 4+ 1/ 5+ 1/ 6+ 1/ 7+ 1/ 8+ … + 1/ 99).
Имея в распоряжении триллион карт, мы добились бы нависания величиной в
1/ 2∙(1 + 1/ 2+ 1/ 3+ 1/ 4+ 1/ 5+ 1/ 6+ 1/ 7+ 1/ 8+ … + 1/ 999999999999).
Чтобы посчитать такое, требуется проделать немало арифметических действий, но у математиков есть способы спрямлять подобные вычисления, и я могу твердо заверить вас, что полное нависание в случае сотни карт будет лишь чуточку меньше, чем 2,58868875882, а для триллиона карт — на самую толику меньше, чем 14,10411839041479.
Полученные числа удивительны вдвойне. Во-первых, тем, что вообще удается добиться нависания в 14 с лишним карточных длин, пусть даже для этого понадобится триллион карт. Четырнадцать карточных длин — это более четырех футов, если брать стандартные игральные карты. А во-вторых, если об этом подумать, тем, что числа оказываются именно такими, а не большими. При переходе от 52 к 100 картам мы заработали дополнительное нависание лишь в одну треть длины карты (даже чуть-чуть меньше, чем в одну треть). А затем переход к триллиону — а колода в триллион стандартных игральных карт будет иметь такую толщину, что покроет большую часть расстояния до Луны, — принес нам всего лишь одиннадцать с половиной карточных длин.
Ну а если бы число карт у нас было неограниченным? Какого максимального нависания мы могли бы достичь? Замечательный ответ на этот вопрос состоит в том, что максимального нависания просто нет. Если в запасе имеется достаточное число карт, можно сделать нависание сколь угодно большим. Желаете получить нависание в 100 карточных длин? Пожалуйста, возьмите что-то около 405 709 150 012 598 триллионов триллионов триллионов триллионов триллионов триллионов карт — колоду, высота которой намного превысит размеры известной нам части Вселенной. А можно сделать и большее нависание, и еще большее — настолько большое, насколько захотите, если только у вас есть желание иметь дело с невообразимо большим числом карт. Нависание в миллион карт? Пожалуйста, но, правда, количество необходимых для этого карт будет таким большим, что только для записи этого числа понадобится нормального размера книга — в этом числе будет 868 589 цифр.
Теперь нам предстоит сосредоточить свое внимание на выражении в скобках, а именно
1 + 1/ 2+ 1/ 3+ 1/ 4+ 1/ 5+ 1/ 6+ 1/ 7+ ….
Математики говорят, что это — ряд ; ряд означает неограниченно продолжающееся суммирование членов, каждый из которых задается некоторым общим законом. В нашем случае члены ряда 1, 1/ 2, 1/ 3, 1/ 4, 1/ 5, 1/ 6, 1/ 7, … — это обратные величины к обычным натуральным числам 1, 2, 3, 4, 5, 6, 7, ….
Ряд 1 + 1/ 2+ 1/ 3+ 1/ 4+ 1/ 5+ 1/ 6+ 1/ 7+ … играет в математике достаточно важную роль, чтобы иметь собственное название. Он называется гармоническим рядом.
Подведем промежуточный итог. Складывая достаточно большое число членов гармонического ряда, можно получить сколь угодно большой результат. У этой суммы нет предела.
Грубый, но распространенный и доходчивый способ выразить то же самое — это сказать, что гармонический ряд суммируется к бесконечности:
1 + 1/ 2+ 1/ 3+ 1/ 4+ 1/ 5+ 1/ 6+ 1/ 7+ … = ∞.
Хорошо воспитанных математиков учат морщиться при виде таких выражений; но я думаю, что с ними вполне можно иметь дело, если знать опасности, которые вас тут подстерегают. Леонард Эйлер, один из величайших математиков всех времен, использовал подобные выражения постоянно и весьма плодотворно. Но все же правильный, профессиональный математический термин, описывающий то, что здесь происходит, звучит так: гармонический ряд расходится.
Сказать-то я это сказал, но смогу ли я это доказать? Всем известно, что в математике каждый результат надо строго логически доказывать. Результат у нас такой: гармонический ряд расходится. Как его доказать?
Доказательство оказывается довольно простым и опирается только на самую элементарную арифметику. В Средние века его нашел французский ученый Никола Орем (ок. 1323-1382). [1] Никола Орем (Nicole d'Oresme) был не только математиком, но и естествоиспытателем, философом, физиком, астрономом и экономистом, а также воспитателем Дофина, будущего короля Карла V. (Примеч. перев.)
Орем заметил, что сумма 1/ 3+ 1/ 4больше чем 1/ 2; равным образом и 1/ 5+ 1/ 6+ 1/ 7+ 1/ 8также больше чем 1/ 2; то же верно и для суммы 1/ 9+ 1/ 10+ 1/ 11+ 1/ 12+ 1/ 13+ 1/ 14+ 1/ 15+ 1/ 16. Другими словами, будем брать сначала 2, потом 4, потом 8, потом 16 и т.д. членов гармонического ряда и группировать их вместе; получится бесконечное число таких групп, каждая из которых в сумме превосходит одну вторую. Полная сумма, следовательно, должна быть бесконечной. Не стоит переживать из-за того, что размеры этих групп растут очень быстро: «в бесконечности» полно места, и неважно, сколько групп мы уже образовали, следующая все равно окажется на своем месте и к нашим услугам. Всегда есть возможность добавить еще одну а это и означает, что сумма растет неограниченно.
Интервал:
Закладка: