Алексей Лосев - Хаос и структура
- Название:Хаос и структура
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1993
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Лосев - Хаос и структура краткое содержание
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число.
"Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Хаос и структура - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Однако если это всерьез так, если мы на деле, а не на словах признаем непрерывную текучесть и понятий, и их признаков, то я не знаю, как обойтись без интегрального понимания и самого понятия, и его признаков. Признаки понятия обязательно становятся, текут, меняются и непрерывно переходят друг в друга. Можно уловить только общее направление этого непрерывного становления и с точки зрения этого общего направления судить о том, что именно здесь становится.
Наблюдая данную область действительности, мы сначала сталкиваемся с массой разнородных фактов, никак не связанных между собою. Механик и физик находят сначала факты падения тела в совершенно несвязанном виде: камень падает одним способом, пушинка—другим. Астрономы до Кеплера бесчисленное число раз смотрели на планеты и никак не могли представить себе их точных орбит. Художник, наблюдающий жизнь, видит, как одно и то же правительственное предприятие или одно и то же событие по–разному действует в разных областях жизни. Да наконец, просто вы слышите музыкальную мелодию и сначала не можете вспомнить, где и когда вы ее слышали и какому композитору она принадлежит. Все это слепые и неосмысленные факты.
Но вот механик и физик начинают наблюдать общую тенденцию наблюдаемых ими фактов: падение, оказывается, взятое как таковое, вовсе не зависит от того, какого веса падающий предмет. Оказывается тут же, что можно наблюдать известную закономерность и относительно самого движения падающего тела—относительно его пути или скорости движения. Художник начинает замечать, что коллективизация крестьянства дает огромные выгоды в смысле народного хозяйства. Услышанную вами музыкальную мелодию вы точно зафиксировали как такую–то и такую–то; ее строение, ее направление вы точно определили и зафиксировали.
И что же остается? Остается на основании всех этих установленных направлений, тенденций, принципов развития данного явления установить самое явление — установить, что такое падение тела или орбита планет, дать тот или иной художественный образ подъема народного хозяйства в связи с коллективизацией крестьянства, вспомнить и назвать музыкальную пьесу и ее композитора на основании установления ее манеры, ее особенностей.
Это и значит в логическом смысле интегрировать. И так как математики говорят об интегрировании чего–то как производной по чему–то как по независимому переменному, то мы здесь и должны говорить — в логическом смысле—об интегрировании наблюдаемых принципов падения тела в смысле его скорости или по наблюдаемым фактам этого падения, т. е. по времени, об интегрировании наблюдаемых особенностей в развитии народного хозяйства по фактам этого хозяйства, об интегрировании манеры в построении мелодии по наблюдаемым фактам этой мелодии. И в результате мы везде получаем здесь интеграл: падение тела как интеграл, художественный образ как интеграл, реальную музыкальную пьесу и ее композитора как интеграл. И везде тут интеграл есть не что иное, как функция соответствующих производных, а производные есть только принципы наблюдаемых фактов в их непрерывном становлении. Везде тут общность и цельность получаемого понятия — как интеграла—всецело зависит от наблюдаемых направлений, а самые эти направления устанавливаются из реально становящихся фактов. Тут, между прочим, для наших целей как раз менее всего важно интегрировать в общем математическом смысле, так как тяжесть и эффектность математического результата здесь, как и везде, имеет слишком огромное значение и стремится перейти к самодовлеющей значимости, игнорируя всякую логику как самостоятельную науку. Поэтому, если закон падения тела и получается в точном математическом смысле как интеграл от скорости падения тела по времени, то для нас в настоящую минуту ценнее то, как Кеплер открыл свой закон движения планет по эллипсам, в одном из фокусов которых находится Солнце. Кеплер, не имея никакого математического понятия об интеграле, просто наблюдал практическое положение планет на небесном своде и отмечал перемещение этих положений; он прикидывал, какой кривой это больше всего соответствует, и, когда он заметил, что эта кривая есть эллипс, он в это мгновение, несомненно, проинтегрировал свои наблюдения, сводившиеся только к установлению общих тенденций в движении планет, но никак не к установлению каких–нибудь функций, интегрирование которых привело бы к эллипсу как к планетной орбите. Хотя все подобные представления как будто бы и менее точны, чем математические, тем не менее для логики они очень важны, и часто важнее даже математических представлений, поскольку они гораздо наивнее и откровеннее рисуют нам логический секрет и дифференциала, и интеграла. А секрет этот, освобожденный от всей тяжести математической схоластики и сложной терминологии, сводится к очень простому: интеграл—это понятие, поскольку оно получено из принципа его инобытийного становления. Обычно понятие—это символ устойчивости и даже неподвижности, даже вечности. У нас же оно только результат обобщения становления. Если не гнаться за субтильной терминологией, за точностью, за формулой и сказать грубо и попросту, то интеграл — это обобщение бесконечного становления: понятие как интеграл— это просто сводка и резюме непрерывного и бесконечного становления. Так мы получаем замечательное учение об общности и цельности, которая и самостоятельна, и всецело зависит от материального и вещественного «независимого переменного». Образуется понятие со своей собственной твердой и нерушимой структурой, которое в то же время есть только продукт становления и даже становление это содержит в себе. Оно твердо, точно от всего отграничено, конечно, но оно в то же самое время обнимает в себе неисчислимую бесконечность непрерывных приближений, нарастаний, становлений, и ими только, этими бесконечно малыми процессами, оно и держится. Значит, уже по одному этому интеграл и, следовательно, понятие как интеграл есть некий синтез конечного и бесконечного, и синтез этот здесь вполне специфичен: он получен из становления, ибо наблюдались тут бесчисленные явления, переходящие одно в другое, и получен он путем становления, ибо для получения интеграла надо было исчерпать становление фактов, т. е. перейти к его пределу.
Так логически рождается эта удивительная категория интеграла.
4. Остается еще сказать несколько слов о том, что значит в логическом смысле получить неопределенный интеграл. Математики учат, что интегрирование всегда содержит в себе ту неопределенность, что к получаемому виду функции как первообразной мы должны еще прибавить величину с, именно произвольную постоянную величину. Объясняется это тем, что, поскольку производная от постоянного равняется нулю, в интеграле всегда должны быть те или другие постоянные, которые при дифференцировании исчезают, переходя от производной к первообразной. Мы, конечно, должны учитывать и их. Можно также сказать, что интегрирование функции в этом «неопределенном» виде дает нам интеграл как функцию только верхнего своего предела. Он ограничен «сверху», а не «снизу», т. е. если мы получаем в качестве интеграла некоторую кривую, то чертить мы ее можем, как угодно перемещая ее ординаты поступательно параллельно самим себе, ибо начало отсчета по х–гм остается совершенно неопределенным и потому произвольным. Это и называется неопределенным интегралом. Он получается всегда, когда мы идем от производной к первообразной. И если каждому интегралу соответствует только одна производная, то каждой производной соответствует бесконечное количество интегралов, правда различающихся между собою не структурой функции, но только тем или иным постоянным. Геометрически мы тут получаем не просто кривую, но т. н. семейство кривых, т. е. бесчисленное количество мест, где чертится одна и та же кривая в зависимости от допущений той или другой точки отсчета по линии х–ов при черчении данной кривой.
Читать дальшеИнтервал:
Закладка: