Яков Перельман - Для юных математиков. Веселые задачи
- Название:Для юных математиков. Веселые задачи
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Яков Перельман - Для юных математиков. Веселые задачи краткое содержание
Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.
Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».
Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.
Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.
Для юных математиков. Веселые задачи - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Окружность шеи великанов была больше окружности шеи нормального человека во столько же раз, во сколько раз был больше ее поперечник, т. е. в 12 раз. И если нормальному человеку нужен № 40, то для великана понадобился бы №:
40x12 = 480.
Глава II Задачи со спичками
ЗАДАЧА № 11
Из шести три
Перед вами (рис. 5) фигура, составленная из 17 спичек. Вы видите в ней 6 одинаковых квадратов. Задача состоит в том, чтобы убрать 5 спичек, не перекладывая остальных, – и осталось бы всего 3 квадрата.
Рис. 5.
ЗАДАЧА № 12 Оставить пять квадратов
В решетке из спичек, представленной на рис. 6-м, нужно так убрать 4 спички, – не трогая остальных, – чтобы осталось пять квадратов.
Рис. 6.ЗАДАЧА № 13 Оставить четыре квадрата
Из той же фигуры (рис. 6) тáк выньте 8 спичек, – не трогая других, – чтобы оставшиеся спички составляли 4 одинаковых квадрата.
ЗАДАЧА № 14 Оставить три квадратаВ той же решетке (рис. 6) тáк уберите 6 спичек, – не перекладывая остальных, – чтобы осталось всего 3 квадрата.
ЗАДАЧА № 15 Оставить два квадратаИ наконец, в той же фигуре (рис. 6) тáк уберите 8 спичек, – не трогая остальных, – чтобы осталось всего лишь два квадрата.
ЗАДАЧА № 16 Шесть четырехугольниковВ фигуре, представленной на рис. 7, нужно тáк переложить 6 спичек с одного места на другое, чтобы образовалась фигура, составленная из 6 одинаковых четырехугольников.
Рис. 7.ЗАДАЧА № 17 Из дюжины спичек
Из 12 спичек нужно составить фигуру, в которой было бы:
три одинаковых четырехугольника и
два одинаковых треугольника.
Как это сделать?
ЗАДАЧА № 18 Из полутора дюжинИз 18 спичек нужно сложить два четырехугольника так, чтобы площадь одного была втрое больше площади другого. Спичек, как и во всех предыдущих задачах, переламывать нельзя. Оба четырехугольника должны лежать обособленно, не примыкая друг к другу.
ЗАДАЧА № 19 Два пятиугольникаЕсли вам удалось решить предыдущую задачу, попытайте силы на такой головоломке:
Из 18 спичек сложить два пятиугольника так, чтобы площадь одного была ровно втрое больше площади другого. Прочие условия те же, что и в предыдущей задаче.
ЗАДАЧА № 20 Из 19 и из 12На чертеже 8-м вы видите, как можно 19-ю целыми спичками ограничить шесть одинаковых участков.
Рис. 8.А можно ли ограничить шесть одинаковых участков, хотя бы и иной формы – 12-ю целыми спичками?
РЕШЕНИЯ ЗАДАЧ СО СПИЧКАМИ (№№ 11–20)
Решение задачи № 11
видно из чертежа 9-го.
Рис. 9.
Решения задач №№ 12, 13, 14 и 15
показаны на чертежах 10-м, 11-м, 12-м, 13-м, 14-м.
Рис. 10.Рис. 11.
Рис. 12.
Рис. 13.
Рис. 14.
Решение задачи № 16
Рис. 15.Решение задачи № 17
показано на чертеже 16-м. Это равносторонний шестиугольник (но не правильный – углы неравны).
Рис. 16.Решение задачи № 18
показано на чертеже 17-м. Площадь левой фигуры заключает два квадрата, каждый со сторонами в 1 спичку. Правый четырехугольник представляет собою параллелограмм, высота которого AB = 1 1/2спичкам. Площадь его, по правилам геометрии, равна его основанию, умноженному на высоту: 4x1 1/2 = 6, – т. е. втрое больше площади левого четырехугольника.
Рис. 17.Решение задач №№ 19 и 20
наглядно показано на прилагаемых чертежах 18 и 19.
Рис. 18.Рис. 19.
Глава III Вес и взвешивание
ЗАДАЧА № 21
Вес бревна
Круглое бревно весит тридцать килограммов. Сколько весило бы оно, если бы было втрое толще, но вдвое короче?
ЗАДАЧА № 22
Десятичные весы
Сто килограммов железных гвоздей уравновешены на десятичных весах железными гирями. Весы затопило водой. Сохранили ли они равновесие и под водой?
ЗАДАЧА № 23
Вес бутылки
Бутылка, наполненная керосином, весит 1000 граммов. Та же бутылка, наполненная кислотой, весит 1600 граммов. Кислота вдвое тяжелее керосина.
Сколько весит бутылка?
ЗАДАЧА № 24
Брусок мыла
На одной чашке весов положен брусок мыла, на другой 3/4 такого же бруска и еще 3/4 килограмма. Весы в равновесии.
Рис. 20. Сколько весит брусок мыла?
Сколько весит целый брусок мыла?
Постарайтесь решить эту несложную задачу устно, без карандаша и бумаги.
ЗАДАЧА № 25 Кошки и котятаИз прилагаемого рисунка 21-го вы усматриваете, что
4 кошки и 3 котенка весят 15 килограммов, а
3 кошки и 4 котенка весят 13 килограммов.
Рис. 21. Сколько весят кошка и котенок порознь?Сколько же весит каждая кошка и каждый котенок в отдельности?
Постарайтесь и эту задачу решить устно.
ЗАДАЧА № 26 Раковина и бусиныРисунок 22-й показывает вам, что 3 детских кубика и 1 раковина уравновешиваются 12-ю бусинами, и что, далее, 1 раковина уравновешивается 1 кубиком и 8-ю бусинами.
Сколько же бусин нужно положить на свободную чашку весов, чтобы уравновесить раковину на другой чашке?
Рис. 22. Задача о раковине и бусинах.
ЗАДАЧА № 27 Вес фруктовВот еще задача в том же роде. Рисунок 23-й показывает, что
3 яблочка и 1 груша весят столько, сколько 10 персиков, а
6 персиков и 1 яблочко весят столько, сколько 1 груша.
Сколько же персиков надо взять, чтобы уравновесить одну грушу?
Рис. 23. Задача о груше и персиках.ЗАДАЧА № 28 Сколько стаканов?
На рисунках 24-а и 24-б вы видите, что бутылка и стакан уравновешиваются кувшином; бутылка сама по себе уравновешивается стаканом и блюдцем; два кувшина уравновешиваются тремя блюдцами.
Рис. 24-а. Задача о стаканах и бутылке.Рис. 24-б. Чем уравновесить бутылку?
Сколько надо поставить стаканов на свободную чашку весов, чтобы уравновесить бутылку? ЗАДАЧА № 29 Гирей и молотком
Надо развесить 2 килограмма сахарного песку на 200 граммовые пакеты. Имеется только одна 500-граммовая гиря, да еще молоток, весящий 900 граммов.
Рис. 25. Затруднение при развешивании.Как получить все 10 пакетов, пользуясь этой гирей и молотком? ЗАДАЧА № 30 Задача Архимеда
Самая древняя из головоломок, относящихся к взвешиванию – без сомнения, та, которую древний правитель сиракузский Гиерон задал знаменитому математику Архимеду.
Предание повествует, что Гиерон поручил мастеру изготовить венец для одной статуи и приказал выдать ему необходимое количество золота и серебра. Когда венец был доставлен, взвешивание показало, что он весит столько же, сколько весили вместе выданные золото и серебро. Однако правителю донесли, что мастер утаил часть золота, заменив его серебром. Гиерон призвал Архимеда и предложил ему определить, сколько золота и сколько серебра заключает изготовленная мастером корона. Архимед решил эту задачу, исходя из того, что чистое золото теряет в воде 20-ю долю своего веса, а серебро – 10-ю долю.
Если вы желаете попытать свои силы на подобной задаче, примите, что мастеру было отпущено 8 килограммов золота и 2 кг серебра, и что, когда Архимед взвесил корону под водой, она весила не 10 кг, а всего 9 1/4 кг. Попробуйте определить по этим данным, сколько золота утаил мастер. Венец предполагается изготовленным из сплошного металла, без пустот.
Читать дальшеИнтервал:
Закладка: