Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Тут можно читать онлайн Борис Бирюков - Жар холодных числ и пафос бесстрастной логики - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Издательство Знание, год 1977. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Жар холодных числ и пафос бесстрастной логики
  • Автор:
  • Жанр:
  • Издательство:
    Издательство Знание
  • Год:
    1977
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.25/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики краткое содержание

Жар холодных числ и пафос бесстрастной логики - описание и краткое содержание, автор Борис Бирюков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Жар холодных числ и пафос бесстрастной логики - читать онлайн бесплатно полную версию (весь текст целиком)

Жар холодных числ и пафос бесстрастной логики - читать книгу онлайн бесплатно, автор Борис Бирюков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

«Золотое десятилетие» заслуживает отдельной книги. Наше изложение не предусматривает подробного разбора этого периода; мы ограничимся лишь общим описанием тех результатов, которые непосредственно касаются становления кибернетики.

«Развитие математики в направлении все увеличивающейся строгости», о котором писал Гёдель, а еще более — критика математического платонизма привели к постановке до тех пор не стоявших вопросов: что такое конструктивный математический объект, то есть объект математического построения? Какие доказательства, выводы, числа, функции, формулы можно считать осуществимыми, вычислимыми?

Разберемся в сущности этой проблемы. Возьмем, например, число 2 64. Несмотря на то, что оно очень велико, его можно фактически записать в обычной десятеричной системе счисления. Число же 4 4 4 4таким образом записать уже нельзя — не хватит ни бумаги, ни типографской краски во всем мире. Но вряд ли есть смысл исключать из математики такие числа. Как и всякая теоретическая наука, математика нуждается в отвлечении от реальных условий, в использовании идеализации. В частности, в математических суждениях и выкладках полезно допускать, что в распоряжении рассуждающего всегда имеется достаточно большое количество бумаги и чернил или что доска, на которой пишутся формулы, достаточно велика. Полезно также предполагать, что имеется достаточно много времени для производства расчетов. При этих вполне разумных допущениях [1]число 4 4 4 4существует как бы фактически, являясь построяемым — конструктивным — объектом, хотя никто и никогда не выпишет его на бумаге. Конструктивность объекта в таком понимании сводится к тезису о его потенциальной осуществимости: объект, считающийся конструктивным, мог бы быть фактически получен (выписан), если бы мы располагали необходимым для этого временем (которое может быть необозримо большим, но в любом случае конечным), пространством (на размеры которого также не накладывается каких-либо ограничений) и материалами (масса которых может превосходить массу известной нам части Вселенной).

Для построения конструктивного объекта требуется осуществить всегда конечное число тех или иных актов поведения—действий, операций. Какой характер могут носить эти акты поведения? Они могут быть реальными действиями, совершаемыми над знаками как материальными образованиями, но могут быть действиями умственными — представлениями о реальных действиях. Далее, чтобы избежать опасности (которая после обнаружения парадоксов теории множеств стала очевидной) допущения в отдельных фазах построения объекта чреватых ошибками интуитивных обобщений, требуется, чтобы эти действия имели простой, элементарный характер. Различный выбор элементарных действий — шагов процесса, приводящего к построению конструктивного объекта, определяет разные подходы к уточнению идеи вычислимости. Мы рассмотрим три таких подхода. Первый подход — рекурсивный.

Определение рекурсивной функции содержалось уже в знаменитой статье Гёделя. Позже Гёдель, а также Ж. Эрбран, развили это понятие. Но особое звучание рекурсивным функциям придал американский логик и математик Алонзо Чёрч (род. в 1903 г.).

Дадим более аккуратное, чем в предшествующей главе, определение рекурсивной функции. Оно состоит из четырех пунктов. Всюду впредь в качестве аргументов и значений функций фигурируют лишь натуральные числа 0, 1, 2, ... (такие функции называют теоретико-числовыми, или арифметическими).

Введем следующие способы (операторы) построения из арифметических функций новых арифметических функций. Эти способы предполагаются применяемыми как ко всюду определенным, так и к не всюду определенным (частичным) функциям.

I. Подстановка. Из функции получается новая функция, если вместо всех ее аргументов подставить функции [2].

II. Примитивная рекурсия [3]. Она заключается в получении (n + 1)-местной функции f из данных n-местной функции g и (n + 2)-местной функции h по схеме:

f(х1, х2,... хn, 0) = g(x1, х2,..., xn),

f(x1, х2,..., хn, m') = h(х1, х2,..., хn, m, f(х1, х2, ..., хn, m)).

Здесь n = 1,2, ...; для случая, когда аргументы х1, х2, ...,Хn (называемые параметрами рекурсии) отсутствуют, отдельно устанавливается f(0) =r (где r — фиксированное целое неотрицательное число), f(m') = h(m, f(m)). Здесь m'—число, непосредственно следующее за числом m в натуральном раду.

III. Мю-операция (или (μ-оператор). Пусть дана (n + 1)-местная функция (функция от n + 1 аргумента) g; по ней (μ-оператор строит n-местную функцию f следующим образом.

Для любого набора чисел х1, х2, ..., Хn f(х1, x2,... хn) равно наименьшему целому неотрицательному числу а, удовлетворяющему условию g (х1 ..., xn, а) = 0. Это число обозначается через рy(g (х1, ..., хn, у) = 0), откуда и название операции.

Если такого числа для набора чисел x1, х2, ..., хn не существует, то функция f на этом наборе не определена.

Будем считать теперь, что следующие всюду определенные функции, называемые исходными, рекурсивны.

(а) Многоместные функции (от n аргументов, n = 0, 1,2....) N n, тождественно-равные нулю, то есть функции, для которых верно:

N n(х1, х2, ..., Хn) = 0 при любых значениях аргументов.

(б) Одноместная функция S «следования за», то есть функция, для которой выполняется равенство S(х) = х' где штрих означает взятие числа, непосредственно следующего за x в натуральном ряду.

(в) n-местные проектирующие функции I ni, Для которых I ni{х1, .... xn) = xi ( i = 1, 2, ..., n; n = 1, 2, 3, ...).

Функции, получающиеся из исходных конечным числом применений схем порождения I и II, называются примитивно рекурсивными; как очевидно, эти функции являются всюду определенными. К примитивно рекурсивным относятся не все, а только часть арифметических функций (правда, наиболее часто встречающееся такого рода функции примитивно рекурсивны). Если разрешить применять схему порождения III, то функции, которые будут таким образом возникать, называются частично рекурсивными. Хотя частично рекурсивные функции — как и примитивно рекурсивные — в конечной счете получаются из исходных (примитивно рекурсивных) функций (а), (б), (в), они в общем случае не всюду определены; это вызывается спецификой (μ-оператора, который из всюду определенной может породить частичную (и даже нигде не определенную) функцию. Если частично рекурсивная функция от n аргументов является всюду определенной (то есть если она определена для любого набора из n натуральных чисел), она называется общерекурсивной функцией. Таким образом, каждая примитивно рекурсивная функция является общерекурсивной, а каждая общерекурсивная — частично рекурсивной. Однако существуют частично рекурсивные функции, не являющиеся общерекурсивными, и общерекурсивные, не являющиеся примитивно рекурсивными.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Борис Бирюков читать все книги автора по порядку

Борис Бирюков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Жар холодных числ и пафос бесстрастной логики отзывы


Отзывы читателей о книге Жар холодных числ и пафос бесстрастной логики, автор: Борис Бирюков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x