Эрнст Нагель - Teopeма Гёделя
- Название:Teopeма Гёделя
- Автор:
- Жанр:
- Издательство:КРАСАНД
- Год:2010
- Город:Москва
- ISBN:978-5-396-00092-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрнст Нагель - Teopeма Гёделя краткое содержание
Нагель Эрнест, Ньюмен Джеймс Рой. Теорема Гёделя: Пер. с англ. Изд. 2-е, испр. — М.: КРАСАНД, 2010. — 120 с. (НАУКУ — ВСЕМ! Шедевры научно-популярной литературы.)
Вниманию читателя предлагается книга известного американского логика Э. Нагеля и опытного популяризатора науки Дж. Р. Ньюмена, посвященная теореме Гёделя о неполноте. Эта теорема была изложена в небольшой статье К. Гёделя, которая впоследствии сыграла решающую роль в истории логики и математики. Авторы настоящей книги, не пытаясь дать общий очерк идей и методов математической логики, строят изложение вокруг центральных, с их точки зрения, проблем этой науки — проблем непротиворечивости и полноты. Доказательство того факта, что для достаточно богатых математических теорий требования эти несовместимы, и есть то поразительное открытие Гёделя, которому посвящена книга. Не требуя от читателя по существу никаких предварительных познаний, авторы с успехом объясняют ему сущность одной из самых замечательных и глубоких теорем математики и логики.
Для специалистов по математической логике, студентов и аспирантов, а также всех заинтересованных читателей.
Teopeма Гёделя - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
8
Конечно, еще более простой пример — формула, состоящая из одной-единственной переменной p. — Прим. перев.
9
Такое расширение можно произвести, просто присоединив эти недоказуемые предложения к арифметике в качестве новых аксиом . Поскольку мы считаем их истинными, то отрицания их не должны и не могут быть доказуемы в арифметике; значит, такое расширение непротиворечивой системы не может сделать ее противоречивой. — Прим. перев.
10
Конечно, у авторов речь шла об английском, а у самого Ришара — о французском языке. — Прим. перев.
11
Пропуск между словами можно при этом считать особой «буквой» (например, последней в алфавите) или просто писать слова подряд, без пропусков. — Прим. перев.
12
Можно было бы сказать «перевода», «моделирования», «кодирования», «представления»; в переводе мы далее будем сознательно варьировать употребление этих терминов, чтобы подчеркнуть принципиальное родство понятий, выражаемых этими терминами, между собой и с используемым далее понятием «нумерации». — Прим. перев.
13
Имеется много различных способов приписывания гёделевских номеров, и какой из них выбрать — совершенно несущественно.
14
После чего уже совсем нетрудно проверить, является ли данное выражение формулой или доказательством нашего исчисления (ср. предыдущее примечание). — Прим. перев.
15
От англ. demonstration (доказательство). — Прим. перев.
16
Цифра — это числовой знак, или имя числа (ср. выше примечание авторов на с. 35–36). — Прим. перев.
17
«Подстановка» — по-английски «substitution». — Прим. перев.
18
Напоминаем, что «цифрой» мы здесь всюду называем всю запись числа, а не отдельный знак такой записи, как обычно; скажем, «10» есть цифра, обозначающая число 10, хотя обычно и говорят, что это число записывается посредством двух цифр «1» и «0». — Прим. перев.
19
Это свойство называют чаще непополнимостью. — Прим. перев.
20
При всем правдоподобии последней фразы она никак не следует из предыдущего. Вообще, далеко не ясно, как распространенный тезис об ограниченности возможностей моделирования человеческого мышления можно согласовать с материалистической гипотезой о его природе. Ср., впрочем, заключительные два абзаца авторского текста. — Прим. перев.
21
Цитируем по сборнику статей « Основания математики » выпущенному в Нью-Йорке в честь 60-летия К. Гёделя (оттуда же взяты приведенные выше краткие биографические сведения).
Интервал:
Закладка: