Игнаси Белда - Том 33. Разум, машины и математика. Искусственный интеллект и его задачи

Тут можно читать онлайн Игнаси Белда - Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Де Агостини, год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 33. Разум, машины и математика. Искусственный интеллект и его задачи
  • Автор:
  • Жанр:
  • Издательство:
    Де Агостини
  • Год:
    2014
  • ISBN:
    978-5-9774-0728-1
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Игнаси Белда - Том 33. Разум, машины и математика. Искусственный интеллект и его задачи краткое содержание

Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - описание и краткое содержание, автор Игнаси Белда, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Уже несколько десятилетий тема искусственного интеллекта занимает умы математиков и людей, далеких от науки. Ждать ли нам в ближайшем будущем появления говорящих машин и автономных разумных систем, или робот еще не скоро сравнится с человеком? Что такое искусственный интеллект и возможно ли в лабораторных условиях создать живой разумный организм? Ответы на эти и многие другие вопросы читатель узнает из данной книги. Добро пожаловать в удивительный мир искусственного интеллекта, где математика, вычисления и философия идут рука об руку.

Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - читать онлайн бесплатно полную версию (весь текст целиком)

Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - читать книгу онлайн бесплатно, автор Игнаси Белда
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Тем не менее число вариантов, полученных при автоматическом и систематическом выводе теорем на основе аксиом и правил вывода, будет опасно близко к числу атомов во Вселенной. По этой причине в машине Logic Theorist использовались эвристические рассуждения, то есть методы нечеткого прогнозирования, которые помогали выбрать лучшие производные высказывания среди возможных. Отобранные высказывания определяли правильную последовательность выводов, позволявших прийти от аксиом к доказательству теорем.

Рассмотрим практический пример. Мы хотим знать, смертен ли Сократ. Нам известны следующие исходные аксиомы:

А: Сократ

В: болельщик «Олимпиакоса

С: грек

D: человек

Е: смертен

А —> С

С —> D

A —> D

С —> Б

D —> E

Определим, истинно или ложно А —> Е, с помощью «грубой силы», то есть путем перебора всех возможных сочетаний. Имеем:

А —> С —> D —> Е

A —> С —> В

A —> D —> E

Мы выполнили семь логических операций, взяв за основу всего пять аксиом и одно правило вывода — гипотетический силлогизм. Легко догадаться, что в сценариях, содержащих больше аксиом и правил вывода, число возможных сочетаний может оказаться столь велико, что на получение доказательств уйдут годы. Чтобы решить эту проблему так, как это сделали Саймон и Ньюэлл, используем эвристическое рассуждение (или эвристику). В нашем примере эвристика подскажет: если мы хотим доказать, что некий человек смертен, нет необходимости заводить разговор о футболе (А —> С —> В).

И символьные, и эвристические системы широко используются для решения практических задач, а не только для автоматического доказательства теорем.

Приведем еще один пример использования эвристик. На каждом ходу в шахматной партии существует в среднем 37 возможных вариантов. Следовательно, если компьютерная программа будет анализировать партию на восемь ходов вперед, на каждом ходу ей придется рассмотреть 37 8возможных сценариев, то есть 3512479453921 ходов — более 3,5 млрд вариантов. Если компьютер тратит на анализ каждого варианта одну микросекунду, то при анализе партии всего на восемь ходов вперед (достаточно простая задача для профессионального шахматиста) мощный компьютер будет думать над каждым ходом больше двух с половиной лет!

Для ускорения процесса нужны какие-то улучшения, которыми и будут эвристики. Эвристики — это правила прогнозирования, позволяющие исключить из рассмотрения ходы, которые ведут к очень невыгодной позиции и поэтому нецелесообразны. Уже благодаря тому, что эвристики позволяют исключить из рассмотрения несколько абсурдных ходов, число анализируемых вариантов существенно сокращается. Таким образом, эвристики — это средства прогнозирования, основанные на интуиции программиста, которые играют столь важную роль в большинстве интеллектуальных систем, что в значительной степени определяют их качество.

* * *

МАТЕМАТИЧЕСКАЯ ЛОГИКА

Математическая логика — раздел математики, занимающийся изучением схем и принципов рассуждений. Это дисциплина, в которой на основе различных правил и методов определяется корректность аргумента. Логика широко используется в философии, математике и информатике как средство проверки корректности имеющихся утверждений и вывода новых. Математическая логика была создана на основе аристотелевой логики Джорджем Булем, автором новой алгебры, которую впоследствии назвали булевой, и Огастесом де Морганом, сформулировавшим законы логики с помощью новой, более абстрактной нотации.

В последние 50 лет математическая логика пережила бурный рост, и на ее основе возникла современная логика, которую следует отличать от классической логики, или логики первого порядка. Формально логика первого порядка рассматривает только конечные выражения и правильно построенные формулы. В ней нет места бесконечным множествам и неопределенности.

Сколь бы сложными ни казались выражения записанные на доске в них очень редко - фото 10

Сколь бы сложными ни казались выражения, записанные на доске, в них очень редко используются символы, значение которых выходит за рамки логики первого порядка.

* * *

В последние годы непрерывно развиваются автоматические рассуждения, и теперь интеллектуальные системы способны рассуждать в условиях недостатка информации (неполноты), при наличии противоречивых исходных утверждений (в условиях неопределенности) или в случаях, когда при вводе новых знаний в систему объем совокупных знаний о среде необязательно возрастает (в условиях немонотонности).

Крайне мощным инструментом для работы в этих областях является нечеткая логика — разновидность математической логики, в которой высказывания необязательно абсолютно истинны или абсолютно ложны. Если в классической математической логике о любом высказывании всегда можно сказать, истинно оно или ложно (к примеру, ложным будет высказывание «некий человек не смертен», а истинным — «все люди смертны»), то в нечеткой логике рассматриваются промежуточные состояния. Так, если раньше говорили, что Крез не беден, это автоматически означало, что он богат, а если говорили, что Диоген не богат, это означало, что он беден (в этом примере классическая логика явно дискриминирует представителей среднего класса!). Применив нечеткую логику, мы можем сказать, что Аристотель богат со степенью, например, 0,6.

* * *

ДЖОРДЖ БУЛЬ (1815–1864) И ЕГО ЛОГИКА

Если Алана Тьюринга называют одним из отцов современной информатики, то Джорджа Буля можно назвать ее дедом. Этот британский философ и математик создал булеву алгебру — основу современной компьютерной арифметики, которая, в свою очередь, является фундаментом всей цифровой электроники.

Буль разработал систему правил, которые посредством математических методов позволяют выражать и упрощать логические задачи, в которых допускается только два состояния — «истина» и «ложь». Три основные математические операции булевой алгебры — это отрицание, объединение («или») и пересечение («и»). Отрицание, обозначаемое символом заключается в смене значения переменной на противоположное. К примеру, если А = «Аристотель — человек», то ¬А = «Аристотель — не человек». Объединение, обозначаемое символом v— это бинарная операция, то есть операция, в которой для получения результата требуются два аргумента. Результатом объединения будет истина, если один из двух аргументов истинный.

К примеру: «Верно ли, что сейчас вы либо читаете, либо ведете машину?». Ответом на этот вопрос будет «Да, верно», поскольку сейчас вы читаете эту книгу. Но если бы вы вели машину и не читали книгу, то ответ также был бы утвердительным. Он был бы утвердительным и в том случае, если бы вы, пренебрегая всеми соображениями безопасности, вели машину и читали эту книгу одновременно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Игнаси Белда читать все книги автора по порядку

Игнаси Белда - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 33. Разум, машины и математика. Искусственный интеллект и его задачи отзывы


Отзывы читателей о книге Том 33. Разум, машины и математика. Искусственный интеллект и его задачи, автор: Игнаси Белда. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x