Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
- Название:Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
- Автор:
- Жанр:
- Издательство:«Де Агостини»
- Год:2014
- Город:Москва
- ISBN:978-5-9774-0635-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии краткое содержание
Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.
Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Компьютерные изображения развиваются очень быстро, достигая все большего качества.
Но эта гонка ограничивается еще одним условием — размером файла. Изображения высокого качества требуют для хранения много места.

Свойства файла показывают характеристики изображения.
* * *
ВИДЕОКАМЕРЫ
Камеры видеонаблюдения, реагирующие на движение, записывают ряд изображений в виде отдельных снимков. Они могут быстро сравнивать каждый снимок с предыдущим путем вычитания матриц двух изображений. Если в результате получается матрица с нулевыми элементами, это означает, что в данном интервале времени не было никакого движения. Ненулевые показатели означают, что два изображения различны. Если изображение изменилось, значит, произошло некоторое движение.
Когда офис банка закрыт, камеры видеонаблюдения с детектором движения записывают и сравнивают фотографии. Если изменений нет (два последовательных изображения одинаковы, разность матриц равна нулю), устройство стирает предыдущую фотографию, чтобы сэкономить место на диске. Сохраняются только изображения с видимыми изменениями. Математика следит за нами!
* * *
Программы для обработки изображений пытаются решить эту проблему различными методами сжатия данных. На профессиональном уровне результаты впечатляют, но для персональных компьютеров простого решения не существует. Чтобы сэкономить место на диске, при сжатии изображений приходится жертвовать данными и, следовательно, качеством. В информатике такие методы называются необратимым сжатием или сжатием с потерей информации.
Часто решение использовать векторное или растровое изображение зависит от метода сжатия. Растровое изображение не может быть увеличено без существенной потери качества. Векторная графика предоставляет возможность рассматривать изображения на любом экране с максимальным разрешением.
* * *
ТРЕХМЕРНЫЕ МАТРИЦЫ
Понятие пиксельной таблицы или матрицы может быть обобщено для трехмерной компьютерной графики, где аналогичная трехмерная таблица состоит из кубических блоков — вокселей. В этом случае информация о цвете хранится в кубических элементах, расположенных в трехмерной матрице. Хотя воксели являются мощным инструментом для передачи сложных форм, они требуют много памяти. Поэтому трехмерные изображения, как правило, хранятся в виде векторной графики.

* * *
Архитектурные чертежи и промышленные модели традиционно представлялись двумерными проекциями различных видов, например, виды сверху, спереди и сбоку и перспективный вид. Такие чертежи использовались инженерами для изображения своих идей и, в частности, для показа другим. Компьютеры произвели настоящую революцию в мире дизайна.

Сегодня системы автоматизированного проектирования являются основным инструментом для рисования проекций. Однако прежде чем сесть за работу над проектом, инженеру необходимо запрограммировать оборудование так, чтобы оно понимало, что от него требуется. Вычислительная геометрия предоставляет математический аппарат, с помощью которого системы автоматизированного проектирования могут создавать чертежи.
Во-первых, программа использует набор геометрических фигур: прямые и ломаные линии, многоугольники, окружности, эллипсы и кривые Безье.
Кривые Безье были разработаны в 1962 г. для изображения кривых в технических чертежах. Пьер Безье(1910–1999) , инженер компании «Рено», описал кривые этого вида в математических терминах. Они первоначально использовались для проектирования самолетов и автомобилей, но позже стали одним из элементов систем автоматизированного проектирования. Компьютерный язык PostScript (Постскрипт), используемый высококачественными принтерами, также основан на кривых Безье. Различные графические редакторы используют термин «безье» для названия некоторых из своих функций. Эти программы просты в использовании и уже давно стали стандартом в графическом дизайне. Все они основаны на векторных изображениях.
В мире систем автоматизированного проектирования растровые изображения считаются примитивным форматом, по крайней мере, с концептуальной точки зрения, поскольку они хранят информацию в пикселях и поэтому не столь гибки, как векторные изображения. Программы систем автоматизированного проектирования, которые генерируют векторную графику, позволяющую вращать, перемещать, увеличивать и изменять наклон отдельных деталей изображения, применяют точные преобразования и отдельные основные компоненты, чтобы показать полностью готовое изделие на экране.
* * *
КРИВЫЕ БЕЗЬЕ
Определять формы геометрически не так уж сложно. Точки на плоскости можно задать их координатами. Например, точка Аимеет координаты ( х 1, у 1 ), а точка В— ( х 2, у 2 ). Это все, что нам нужно знать, чтобы провести прямую линию между ними. Квадратичные кривые Безье являются кривыми второго порядка и задаются тремя опорными точками. Например, шрифты типа True Туре состоят из кривых на основе квадратичных кривых Безье. Существуют также кубические кривые Безье и другие кривые, более высоких порядков.
* * *
Векторная графика идеальна, если изображение по каким-либо причинам необходимо увеличить. Как мы видели, векторные изображения можно увеличивать без ограничений.
С другой стороны, векторная графика не подходит для кодирования фотографий или видео. Практически все цифровые камеры сохраняют изображения в растровом формате. Почему? Одной из причин является то, что данные, описывающие векторную графику, должны пройти довольно сложную обработку, прежде чем они создадут окончательное изображение. Процессор должен быть достаточно мощным, чтобы выполнить необходимые расчеты и сделать это быстро. Если объем данных велик, вывод даже небольшого изображения на экран камеры может занять довольно много времени. Тем не менее, существует несколько форматов, которые используют комбинации векторных и растровых изображений.
Помимо преимуществ и недостатков различных форматов, все данные, выводимые на экран или распечатываемые на принтере, нужно сначала переводить в пиксели — основные строительные элементы современных изображений.
Дистанционное зондирование — относительно новое направление, появившееся в середине XX века. В качестве исследовательского инструмента используются спутниковые снимки. Одним из самых известных искусственных спутников на орбите Земли является Meteosat . Это отличный пример того, как спутниковые изображения применяются для практических целей. Этот спутник используется для составления прогнозов погоды в Европе и Северной Африке. Он является одним из пяти метеорологических спутников, находящихся над экватором и передающих примерно каждые полчаса информацию о состоянии атмосферы. Другими спутниками являются два спутника GOES, передающие информацию для Америки, спутник Insat — для Индии и GMS — для Японии. Они передают фотографии атмосферы, которые можно видеть каждый день на экранах телевизоров по всему миру. Но существует много других спутников, наблюдающих за Землей, которые используются не только в метеорологических целях, но и для нужд картографии, и для изучения природных ресурсов.
Читать дальшеИнтервал:
Закладка: