Стивен Вайнберг - Мечты об окончательной теории
- Название:Мечты об окончательной теории
- Автор:
- Жанр:
- Издательство:Едиториал УРСС
- Год:2004
- Город:Москва
- ISBN:5-354-00526-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Вайнберг - Мечты об окончательной теории краткое содержание
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.
Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?
Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.
Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами. Она распахивает читателю двери в новый мир и помогает понять то, с чем он там встретится.
Мечты об окончательной теории - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Конечно, стандартная модель явилась огромным шагом вперед по сравнению с путаницей приближенных симметрий, плохо сформулированных динамических предположений и голых фактов, которую изучали в институте физики моего поколения. Но очевидно, что стандартная модель не является окончательным ответом, и чтобы выйти за ее пределы, нужно понять все ее недостатки.
Тем или иным образом все проблемы стандартной модели упираются в явление, названное спонтанным нарушением симметрии . Открытие этого явления, сначала в физике твердого тела, а затем и в физике частиц, стало одним из великих достижений науки ХХ в. Главный успех был достигнут в объяснении различий между слабыми и электромагнитными взаимодействиями, поэтому для объяснения явления спонтанного нарушения симметрии лучше всего начать с электрослабой теории.
Эта теория является частью стандартной модели, имеющей дело со слабыми и электромагнитными взаимодействиями. Она основана на точном принципе симметрии, утверждающем, что законы природы не меняют своей формы, если заменить поля электронов и нейтрино на смешанные поля, например, взять одно поле, состоящее на 70 % из нейтрино и на 30 % из электрона, и другое поле, состоящее на 30 % из нейтрино и 70 % из электрона. При этом одновременно необходимо в тех же пропорциях перемешать поля других семейств частиц, например, кварков u и d . Такой принцип симметрии называется локальным, поскольку предполагается, что законы природы остаются неизменными, даже если смесь полей будет меняться со временем или от точки к точке в пространстве. Но есть и другое семейство частиц, существование которого диктуется указанным принципом симметрии, примерно таким же образом, как существование гравитационного поля диктуется симметрией между разными координатными системами. Это семейство состоит из фотона и частиц W , Z , причем эти поля также должны перемешиваться друг с другом, если мы перемешиваем поля электронов и нейтрино и поля кварков. Обмен фотонами обуславливает электромагнитные силы, а обмен частицами W и Z генерирует слабые ядерные силы, так что симметрия между электроном и нейтрино является также симметрией между электромагнитными и слабыми ядерными силами.
Однако подобная симметрия определенно отсутствует в окружающей нас природе, и поэтому-то ее так долго не могли открыть. Например, электроны и частицы W , Z обладают массами [162], а нейтрино и фотоны не имеют массы. (Слабые силы во много раз слабее электромагнитных именно благодаря большой массе W , Z .) Иными словами, симметрия, связывающая электроны, нейтрино и другие частицы, есть свойство основных уравнений стандартной модели, определяющих свойства элементарных частиц, но в то же время, эта симметрия не выполняется для решений этих уравнений, т.е. для свойств самих частиц.
Чтобы понять, как это возможно, чтобы уравнения имели симметрию, а решения – нет, предположим, что наши уравнения полностью симметричны относительно двух типов частиц (например, u -, d -кварков), и мы хотим найти решения этих уравнений, определяющие массы обеих частиц. Можно было бы предположить, что симметрия между двумя типами кварков приведет к тому, что и их массы окажутся одинаковыми, но это не единственная возможность [163]. Симметрия уравнений не исключает возможности того, что решение будет давать массу u -кварка больше, чем масса d -кварка, но при этом обязательно должно существовать второе решение уравнений, дающее массу d -кварка на столько же большую массы u -кварка. Таким образом, симметрия уравнений необязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности решений. В этом простом примере реальные свойства кварков будут соответствовать одному или другому решению, демонстрируя нарушение симметрии исходной теории. Заметим, что на самом деле безразлично, какое из двух решений реализуется в природе, если единственной разницей между кварками u и d является разница в их массах, тогда разница между двумя решениями будет соответствовать тому, какой из кварков мы назовем u , а какой d . Природа, как мы ее знаем, соответствует одному решению всех уравнений стандартной модели, при этом безразлично какому , если только все решения связаны точными принципами симметрии.
В подобных случаях говорят, что симметрия нарушена, хотя лучше было бы говорить, что симметрия «спрятана» , так как уравнения продолжают обладать симметрией, и именно уравнения определяют свойства частиц. Описанное явление называется спонтанным нарушением симметрии , так как ничто не нарушает симметрию уравнений теории, а нарушение симметрии возникает спонтанно в различных решениях уравнений.
Красота наших теорий во многом определяется принципами симметрии. Именно поэтому первые работы по спонтанному нарушению симметрии в начале 60-х гг. вызвали столь большой резонанс. Перед нами вдруг открылось, что в законах природы есть значительно больше симметрии, чем это кажется на основе анализа свойств элементарных частиц. Нарушенная симметрия – вполне платоновское понятие: та реальность, которую мы наблюдаем в наших лабораториях есть лишь искаженное отражение более глубокой и более красивой реальности уравнений, отображающих все симметрии теории.
Обычный постоянный магнит является хорошим реалистичным примером нарушенной симметрии. (Этот пример особенно подходит потому, что идея спонтанного нарушения симметрии появилась впервые в квантовой физике в 1928 г., в построенной Гейзенбергом теории постоянного магнетизма.) Уравнения, определяющие поведение атомов железа и магнитное поле в магните, нагретом до очень высокой температуры (скажем, 800 °С), обладают точной симметрией по отношению ко всем направлениям в пространстве: ничто в этих уравнениях не отличает север от юга или восток от запада. Однако если кусок железа охладить ниже 770 °С, он внезапно приобретает определенным образом направленное магнитное поле [164], нарушая тем самым симметрию между направлениями. Расе крохотных существ, родившихся и проживших всю жизнь внутри постоянного магнита, потребовалось бы много времени на то, чтобы осознать, что истинные законы природы обладают полной симметрией относительно разных направлений в пространстве, и выделенное направление возникает только потому, что спины атомов железа спонтанно выстраиваются в одну сторону, создавая магнитное поле.
Подобно существам внутри магнита, мы недавно обнаружили симметрию, которая нарушается в нашей Вселенной. Эта симметрия связывает слабые и электромагнитные силы [165], а ее нарушение проявляется, например, в разнице между безмассовым фотоном и очень тяжелыми частицами W и Z . Большая разница между нарушением симметрии в стандартной модели и в магните заключается в том, что происхождение намагниченности хорошо известно. Она возникает за счет известных сил взаимодействия между соседними атомами железа, стремящимися выстроить свои спины параллельно друг другу. Стандартная модель гораздо менее изучена. Ни одна из известных сил, входящих в стандартную модель, недостаточно велика, чтобы принять на себя ответственность за нарушение симметрии между слабыми и электромагнитными взаимодействиями. Главное, чего мы все еще не знаем о стандартной модели, – это что является причиной нарушения электрослабой симметрии.
Читать дальшеИнтервал:
Закладка: