Бастиан Блоэм - Нестареющее тело. Научное исследование о том, как защитить свои тело и мозг и не допустить развития неврологических заболеваний
- Название:Нестареющее тело. Научное исследование о том, как защитить свои тело и мозг и не допустить развития неврологических заболеваний
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2021
- Город:Москва
- ISBN:978-5-04-155994-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бастиан Блоэм - Нестареющее тело. Научное исследование о том, как защитить свои тело и мозг и не допустить развития неврологических заболеваний краткое содержание
Нестареющее тело. Научное исследование о том, как защитить свои тело и мозг и не допустить развития неврологических заболеваний - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
49. Understanding targeted therapy. American Society of Clinical Oncology. Cancer.net. January 2019. www.cancer.net/navigating-cancer-care/how-cancer-treated/personalized-and-targeted-therapies/understanding-targeted-therapy. Accessed March 28, 2019.
50. Jackson SE, Chester JD. Personalised cancer medicine. International Journal of Cancer. 2015;137(2):262–266.
51. Singleton AB, Hardy JA, Gasser T. The birth of the modern era of Parkinson’s disease genetics. Journal of Parkinsons Disease. 2017;7(Suppl 1):S87-S93.
52. Goker-Alpan O, Schiffmann R, LaMarca ME, Nussbaum RL, Mc Inerney-Leo A, Sidransky E. Parkinsonism among Gaucher disease carriers. Journal of Medical Genetics. 2004;41(12):937–940.
53. Study goals. Parkinson’s Progression Markers Initiative. www.ppmi-info. org/about-ppmi/study-goals. Accessed March 28, 2019.
54. Access Data & Specimens. Parkinson’s Progression Markers Initiative. www.ppmi-info.org/access-data-specimens. Accessed February 11, 2019.
55. PPMI Clinical Study. The Michael J. Fox Foundation for Parkinson’s Research. www.michaeljfox.org/ppmi-clinical-study. Accessed October 15, 2018.
56. Gash DM, Rutland K, Hudson NL, et al. Trichloroethylene: parkinsonism and complex 1 mitochondrial neurotoxicity. Annals of Neurology. 2008;63(2):184–192.
57. Там же.
58. Haddad D, Nakamura K. Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson’s disease. FEBS Letters. 2015;589(24 Pt A):3702–3713.
59. Xu L, Pu J. Alpha-synuclein in Parkinson’s disease: from pathogenetic dysfunction to potential clinical application. Parkinson’s Disease. 2016;2016:1720621.
60. Bendor J, Logan T, Edwards RH. The function of a-synuclein. Neuron. 2013;79(6):10.1016/j.neuron.2013.1009.1004.
61. Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, Ross CA. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nature Neuroscience. 2006;9(10): 1231–1233; Martin I, Kim JW, Dawson VL, Dawson TM. LRRK2 pathobiology in Parkinson’s disease. Journal of Neurochemistry. 2014;131(5):554–565.
62. Martin I, Kim JW, Dawson VL, Dawson TM. LRRK2 pathobiology in Parkinson’s disease. Journal of Neurochemistry. 2014;131(5):554–565.
63. Moses H, Dorsey ER, Matheson DM, Thier SO. Financial anatomy of biomedical research. JAMA. 2005;294(11): 1333–1342; Moses H, Matheson DM, Cairns-Smith S, George BP, Palisch C, Dorsey E. The anatomy of medical research: US and international comparisons. JAMA . 2015;313(2):174–189.
64. Moses H, Dorsey ER, Matheson DM, Thier SO. Financial anatomy of biomedical research. JAMA. 2005;294(11):1333–1342.
65. 2018 PhRMA Annual Membership Survey. Pharmaceutical Research and Manufacturers of America. July 26, 2018. www.phrma.org/ report/2018-phrma-annual-membership-survey. Accessed June 28, 2019.
66. Moses H, Dorsey ER, Matheson DM, Thier SO. Financial anatomy of biomedical research. JAMA. 2005;294(11): 1333–1342; Moses H, Matheson DM, Cairns-Smith S, George BP, Palisch C, Dorsey E. The anatomy of medical research: US and international comparisons. JAMA . 2015;313(2):174–189.
67. Moses H, Dorsey ER, Matheson DM, Thier SO. Financial anatomy of biomedical research. JAMA. 2005;294(11):1333–1342.
68. Cannon JR, Greenamyre JT. Gene-environment interactions in Parkinson’s disease: specific evidence in humans and mammalian models. Neurobiology of Disease. 2013;57:38–46.
69. Там же.
70. Там же.
71. Di Maio R, Hoffman EK, Rocha EM, et al. LRRK2 activation in idiopathic Parkinson’s disease. Science Translational Medicine. 2018; 10(451); Cannon JR, Greenamyre JT. Gene-environment interactions in Parkinson’s disease: specific evidence in humans and mammalian models. Neurobiology of Disease. 2013;57:38–46; Lee J-W, Cannon JR. LRRK2 mutations and neurotoxicant susceptibility. Experimental Biology and Medicine. 2015;240(6):752–759.
72. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery, and Psychiatry. 1992;55(3):181–184; Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology. 2016;86(6):566–576.
73. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery, and Psychiatry . 1992;55(3):181–184; Schrag A, Ben-Shlomo Y, Quinn N. How valid is the clinical diagnosis of Parkinson’s disease in the community? Journal of Neurology, Neurosurgery & Psychiatry. 2002;73(5):529.
74. Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology. 2016;86(6):566–576.
75. MDS-UPDRS. International Parkinson and Movement Disorder Society. July 1, 2008. www.movementdisorders.org/MDS-Files1/PDFs/Rating-Scales/MDS-UPDRS_English_FINAL_Updated_June2019.pdf.
76. Dolan KA. Andy Grove’s last stand. Forbes. January 11, 2008. www. forbes.com/forbes/ 2008/0128/070.html#462dbe0b641e. Accessed June 28, 2019.
77. Little MA, McSharry PE, Roberts SJ, Costello DA, Moroz IM. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMedical Engineering OnLine. 2007;6(1):23.
78. Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Transactions on Biomedical Engineering. 2009;56(4):1015–1022.
79. Tsanas A, Little MA, McSharry PE, Spielman J, Ramig LO. Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Transactions on Biomedical Engineering . 2012;59(5):1264–1271.
80. Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Transactions on Biomedical Engineering . 2009;56(4):1015–1022; Tsanas A, Little MA, McSharry PE, Spielman J, Ramig LO. Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Transactions on Biomedical Engineering . 2012;59(5):1264–1271; Tsanas A, Little MA, McSharry PE, Ramig LO. Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Transactions on Biomedical Engineering. 2010;57(4):884–893; Tsanas A, Little MA, McSharry PE, Ramig LO. Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson’s disease symptom severity. Journal of the Royal Society Interface . 2011;8(59):842–855.
81. Little MA. A test for Parkinson’s with a phone call [видео]. TED Global 2012. June 2012. www.ted.com/talks/max_little_a_test_for_ parkinson_s_with_a_phone_call. Accessed June 28, 2019.
82. Arora S, Venkataraman V, Zhan A, et al. Detecting and monitoring the symptoms of Parkinson’s disease using smartphones: a pilot study. Parkinsonism & Related Disorders. 2015;21(6):650–653.
83. Там же.
84. Zhan A, Mohan S, Tarolli C, et al. Using smartphones and machine learning to quantify Parkinson disease severity: the mobile Parkinson disease score. JAMA Neurology. 2018;75(7):876–880.
85. Bot BM, Suver C, Neto EC, et al. The mPower study, Parkinson disease mobile data collected using ResearchKit. Scientific Data. 2016;3:160011.
86. McLeonida. ResearchKit demo by Jeff Williams at Apple special event, March 2015 [видео]. YouTube. March 11, 2015. www.youtube.com/ watch?v=O0gcEFjQNGk. Accessed June 28, 2019.
87. Dorsey ER, Beck CA, Adams M, et al. Communicating clinical trial results to research participants. Archives of Neurology. 2008;65(12):1590–1595.
88. Writing Group for the NINDS Exploratory Trials in Parkinson Disease Investigators. Effect of creatine monohydrate on clinical progression in patients with Parkinson disease: a randomized clinical trial. JAMA. 2015;313(6):584–593.
89. Dorsey ER, Chan Y-FY, McConnell MV, Shaw SY, Trister AD, Friend SH. The use of smartphones for health research. Academic Medicine. 2017;92(2):157–160.
90. Turakhia MP, Desai M, Hedlin H, et al. Rationale and design of a largescale, app-based study to identify cardiac arrhythmias using a smartwatch: the Apple Heart Study. American Heart Journal . 2019;207:66–75.
91. Farr C. The Apple Watch just got a lot better at tracking symptoms of Parkinson’s disease. CNBC. June 9, 2018. www.cnbc.com/2018/06/09/ apple-watch-adds-tech-to-track-parkinsons-disease.html. Updated June 10, 2018. Accessed November 10, 2018.
92. Collaboration with Verily aims to deepen Parkinson’s understanding through digital health tools. FoxFeed Blog. May 9, 2018. www.michaeljfox. org/news/collaboration-verily-aims-deepen-parkinsons-understanding-through-digital-health-tools?collaboration-with-verily-aims-to-deepen-parkinson-understanding-through-digital-health-tools=. Accessed June 28, 2019; About the study. Personalized Parkinson Project. www. parkinsonopmaat.nl/studie. Accessed May 20, 2019.
93. Shults CW, Oakes D, Kieburtz K, et al. Effects of coenzyme q10 in early Parkinson disease: evidence of slowing of the functional decline. Archives of Neurology. 2002;59(10): 1541–1550; Parkinson Study Group QE3 Investigators. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurology. 2014;71(5):543–552.
94. Adams CP, Brantner VV. Estimating the cost of new drug development: is it really $802 million? Health Affairs. 2006;25(2):420–428; Dorsey ER, Papapetropoulos S, Xiong M, Kieburtz K. The first frontier: digital biomarkers for neurodegenerative disorders. Digital Biomarkers. 2017;1(1):6-13; Dorsey ER, Venuto C, Venkataraman V, Harris DA, Kieburtz K. Novel methods and technologies for 21st-century clinical trials: a review. JAMA Neurology. 2015;72(5):582–588; CNS drugs take longer to develop and have lower success rates than other drugs [пресс-релиз]. Tufts Center for the Study of Drug Development. November 4, 2014. https://static1.squarespace.com/static/5a9eb0c8e2ccd1158288d8dc/tZ5aa 2bf604192023932fe1561/1520615264660/PR-NOVDEC14.pdf. Accessed June 28, 2019.
95. Dwyer C. Pfizer halts research into Alzheimer’s and Parkinson’s treatments. The Two-Way. January 8, 2018. www.npr.org/sections/ thetwo-way/2018/01/08/576443442/pfizer-halts-research-efforts-into-alzheimers-and-parkinsons-treatments. Accessed June 28, 2019.
96. Там же.
97. Taylor P. Backed by Bain, Pfizer loads prime CNS assets into new biotech. FierceBiotech. October 23, 2018. www.fiercebiotech.com/biotech/ embargo-8am-edt-backed-by-bain-pfizer-loads-prime-cns-assets-into-new-biotech. Accessed February 11, 2019.
98. Knabe K. Pfizer’s Parkinson’s drugs will be developed by start-up Cerevel Therapeutics. FoxFeed Blog. October 24, 2018. www.michaeljfox.org/ news/pfizers-parkinsons-drugs-will-be-developed-start-cerevel-therapeutics?fbclid=IwAR3Wb4f_I6J4AqORHZCpJZeYCzGAdymx 1jSxWVfuZCKTq_-UEWAvY_bHGhI&pfizer-parkinson-drugs-will-be-developed-by-start-up-cerevel-therapeutics=. Accessed June 28, 2019.
Читать дальшеИнтервал:
Закладка: