Оксана Жданова - Микроб гениальности глазами микробиолога и психиатра. Междисциплинарное путешествие
- Название:Микроб гениальности глазами микробиолога и психиатра. Междисциплинарное путешествие
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005684998
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Оксана Жданова - Микроб гениальности глазами микробиолога и психиатра. Междисциплинарное путешествие краткое содержание
Микроб гениальности глазами микробиолога и психиатра. Междисциплинарное путешествие - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
– Акариоты – особые организмы, не имеющие клеточного строения, хранящие свою генетическую информацию в небольших ниточках ДНК или РНК, защищенных белковой оболочкой. Конечно это вирусы – удивительные существа, занимающие промежуточное положение между живой и неживой природой. По сути, они представляют собой генетический материал, защищенный одной или двумя оболочками от внешней среды.
Итак, бактерии относятся к группе «Прокариоты» (доядерные). Теперь давайте посмотрим, как они устроены. Часто бактерии называют просто организованными. Но так ли это на самом деле?
Тело бактериальной клетки представляет собой мешочек, наполненный гелеобразным содержимым – цитоплазмой, в ней располагается основной хранитель генетической информации – нуклеоид или кольцевая хромосома, содержащая в среднем 4100 генов. Кроме того, там могут находиться от 1 до 200 плазмид, несущих дополнительную генетическую информацию, она не является жизненно необходимой, но дает бактериям преимущества в определенных условиях, такой своеобразный «спасательный круг» в условиях трудной жизненной ситуации. Очень важными структурами являются рибосомы, вырабатывающие белок. Они свободно располагаются в цитоплазме, их число непостоянно и меняется в зависимости от нужд клетки. Также некоторые бактерии могут иметь включения, представляющие собой небольшие гранулы, в которых находятся сера, железо, полифосфаты (полимеры фосфорной кислоты – резерв энергии), полимеры продуктов неполного окисления глюкозы (бета-оксимаслянная кислота) и другие вещества.
Тоненькая эластичная оболочка, называемая цитоплазматической мембраной, отделяет внутреннее содержимое бактерии от внешней среды. При этом она обладает избирательной проницаемостью. Через нее внутрь бактерий проникают необходимые вещества, а наружу выводятся вредные. Её принципиальное строение универсально для всех живых клеток – двойной слой фосфолипидов, в который встроены различные белковые молекулы. Мембрана не может обеспечить надежную защиту от механических повреждений, поэтому бактерии обзавелись дополнительной оболочкой, которую называют клеточной стенкой. Она не только защищает бактерии, но и определяет их форму (палочковидную, извитую, нитевидную, шарообразную, звездчатую и др.). Важным компонентом клеточной стенки, является пептидогликан. Он есть только у бактерий, причем у одних он представлен многочисленными слоями и составляет 90% клеточной стенки. В клеточной стенке других бактерий встречается всего один-два слоя пептидогликана, которые сверху покрываются внешней мембраной. Тип клеточной стенки – очень важный признак, положенный в основу распознавания бактерий, а также играющий большую роль в диагностике инфекционных заболеваний. Поэтому все бактерии принято делить по типу строения клеточной стенки на две группы: грамположительные и грамотрицательные. Названия эти даны по фамилии ученого Христиана Грама, предложившего способ окраски, позволяющий различить бактерии.
К первой группе относят бактерии, клеточная стенка которых представлена многочисленными слоями пептидогликана, а ко второй – бактерии у которых один-два слоя пептидогликана покрыты дополнительной мембраной, ее называют наружной или внешней.
Некоторые бактерии приобрели еще одну защитную оболочку – капсулу, она представляет собой слизистый слой, покрывающий клеточную стенку. Такие бактерии, как правило, оказываются опасными для здоровья человека. Капсула помогает бактериям прикрепляться к поверхности субстрата и противостоять защитным силам организма.
Существуют так называемые подвижные бактерии, они способны передвигаться в жидкой среде или по поверхности.

Рис. 1.3. Жгутиковые бегуны – рекордсмены по скорости передвижения
Для этой цели у них имеются особые структуры – жгутики. Их количество и расположение тоже является важным признаком, по которому можно определить вид бактерий. Например, возбудитель холеры имеет только один жгутик, расположенный на одном из полюсов бактериальной клетки, а кишечная палочка обладает большим количеством жгутиков, которые покрывают ее поверхность. Благодаря жгутикам бактерии могут изменять направление движения и выбирать наиболее подходящие условия обитания.
Жгутики представляют собой тоненькие ниточки, в несколько раз превышающие длину самой бактерии и совершают 40—60 оборотов в секунду. Благодаря жгутикам бактерии способны за 10 сек преодолевать 1 мм! Это расстояние превышающее длину самого микроба в 200 раз. Скорость, с которой могут двигаться бактерии, превышает мировой рекорд в беге на 100 метров, в три раза! Мировой рекорд в беге на 100 метров, установленный в 2009 году, составляет 9.58 сек.
А еще есть бактерии, у которых жгутики располагаются не на поверхности, а между наружной мембраной и клеточной стенкой. Они собраны в пучки, прикреплены к полюсам бактерии и обвивают ее вдоль тела. Из-за чего бактерии принимают извитую форму и тоже способны к разным видам движения: штопорообразному, волнообразному, толчкообразному, маятникообразному.
Для осуществления процессов жизнедеятельности (питания, роста, размножения, движения, восстановления поврежденных структур и другие процессы) необходима энергия. Живые существа обладают уникальной способностью – самостоятельно вырабатывать энергию.
Любой организм, любая клетка для осуществления процессов жизнедеятельности нуждается в энергии. В эукариотических клетках она вырабатывается особыми органеллами – митохондриями. Несмотря на то, что бактерии лишены этих органелл, они прекрасно справляются с задачей энергообеспечения. Кстати, ученые считают, что митохондрии – сами бывшие бактерии, которые научились получать энергию при участии кислорода и около 600 млн лет назад перебрались в эукариотические клетки. Поэтому принцип получения энергии у бактерий и митохондрий одинаковый.
Универсальным носителем энергии в живых организмах является аденозинтрифосфорная кислота (АТФ) и весь процесс получения энергии сводится к образованию этого вещества. В клетке расщепление питательных веществ, сопровождается выделением энергии, которая запасается в виде АТФ.
Питательные вещества проникают через цитоплазматическую мембрану в цитоплазму клетки и там под действием ферментов подвергаются расщеплению, при этом разрушаются химические связи и выделяется некоторое количество энергии, которая запасается в виде АТФ. При этом ионы водорода фиксируются с помощью специальных веществ и передаются на электрон-транспортную цепь.
Читать дальшеИнтервал:
Закладка: