Александр Мовсесян - Целевое питание для нормализации показателей здоровья
- Название:Целевое питание для нормализации показателей здоровья
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005375148
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Мовсесян - Целевое питание для нормализации показателей здоровья краткое содержание
Целевое питание для нормализации показателей здоровья - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
– потеря слуха;
– атрофия мозга;
– болезнь Альцгеймера.
Почему может расти уровень гомоцистеина? Как правило, он повышается с возрастом, при нарушении в работе фолатного цикла, при изменениях в работе почек, из-за чего он плохо выводится из организма, при недостатке в организме витаминов группы В, при гипотиреозе, при чрезмерном употреблении продуктов, содержащих метионин, – прежде всего мяса, молочных продуктов, яиц, при избыточном употреблении кофе (более 3—5 чашек в день), при псориазе, гормонозависимых заболеваниях, курении и т. д.
Под фолатным циклом понимается совокупность сложных биохимических реакций, в результате которых происходит трансформация фолиевой кислоты, поступающей в организм с пищей в ее активную форму. В активной форме фолиевая кислота принимает участие в обмене гомоцистеина и уменьшает его концентрацию в крови. Существует еще один путь обезвреживания гомоцистеина – превращение его в цистоционин с участием пиридоксальфосфата. Оба эти превращения координируются S-аденозилметионином (SAM).
Для полноценной реализации фолатного цикла требуются определенные ферменты: метилентетрагидрофолатредуктаза (MTHFR), метионинсинтаза (MTR), метионинсинтазаредуктаза (MTRR), цистатион-B-синтаза (ЦВС), транспортер фолатов (SLC19A1). Эти ферменты, как и все другие белки, закодированы одноименными генами, которые называются генами фолатного цикла. Эти гены могут иметь свои особенности, так называемые полиморфизмы, и у каждого они могут быть свои. Причиной полиморфизма генов являются различные модификации в молекуле ДНК, приводящие к изменению свойств гена и, как следствие, к изменению производимых белков, ферментов и т. д. Модификации в молекуле ДНК происходят вследствие того, что в процессе митоза клетка в первую очередь копирует свою ДНК так, чтобы новая клетка получила идентичный набор генетических инструкций. Однако в процессе репликации могут возникать ошибки («опечатки»), которые и приводят к возникновению изменений (полиморфизму) в последовательности ДНК. Эти полиморфизмы оказывают сильное влияние на очень важный для организма процесс метилирования.
Метилирование – это присоединение одного атома углерода и трех атомов водорода (называемых метильной группой CH 3) к другой молекуле. В организме человека за секунду происходит около миллиарда реакций метилирования. От метилирования зависит процесс выработки энергии, гормональный баланс, иммунный ответ, процессы восстановления нервов, хрящей, ДНК, баланс нейротрансмиттеров, скорость старения организма, стабильность химического состава тела, сохранение памяти, и, что очень важно, – риск сердечно-сосудистых и онкологических заболеваний, и многое другое. Метильные группы осуществляют контроль: процессов воспаления, детоксикации токсичных микроорганизмов, выработки глутатиона, производства лимфоцитов, процессов экспрессии и репрессии генов, стресс-реакции организма и т. д. Таким образом крайне важно, чтобы метилирование происходило с максимальной эффективностью, так как от него зависит слишком большое количество химических реакций в организме. Возникает вопрос: а при чем здесь гомоцистеин? Дело в том, что эффективность метилирования как раз определяют по уровню гомоцистеина. Желательно, чтобы он был меньше 8 ммоль/л, хотя некоторые лаборатории прописывают как норму значительно более высокие значения. Правда, в последние годы происходит ревизия нормы гомоцистеина и уменьшение ее верхнего значения до 12 мкмоль/л.
Считается, что гены даны человеку при рождении, и изменить уже ничего нельзя. Правда техническая возможность таких изменений в настоящее время существует, но вмешиваться в этот процесс на данном этапе очень опасно ввиду неизученности плейотропного эффекта, оказываемого каждым геном. Но как выяснилось сравнительно недавно, гены можно включать и выключать, можно усиливать их действие и можно уменьшать их активность. Более того, большинство генов, находящихся в ядерном ДНК во всех клетках, почти все время выключены. В противном случае гены, находящиеся в клетках, например, мышц, стали бы производить в них и белки, необходимые для формирования зубов. Все клетки одного человека обладают одной и той же ДНК, и, следовательно, одними и теми же генами. Различия между клетками заключаются в том, какие конкретно гены активны и насколько они активны. Таким образом, в каждый конкретный момент в клетке активны лишь те гены, которые ей в этот момент необходимы, остальные гены инактивированы. Включение и выключение генов производится различными методами, один из которых заключается в присоединении к определенным участкам ДНК метильных меток. Более конкретно, при метилировании CH3 добавляется в С5 позиции к цитозиновому кольцу, являющемуся частью CpG—динуклеотида (два нуклеотида соединяясь путем конденсации образуют динуклеотид). В дальнейшем, возможно, ферменты окислят метилированный цитозин и в результате деметилирования превратят его обратно в цитозин. Это и есть метилирование ДНК, которое осуществляется белками, называемыми метилтрансферазами. Метилирование ДНК инактивирует экспрессию эндогенных ретровирусных генов, встроенных в геном хозяина, и тем самым нейтрализует их. Но самое главное – метилирование ДНК оказывает самое непосредственное влияние на развитие практически всех типов онкозаболеваний. Установлено, что метилирование в раковых клетках сильно отличается от нормальных в основном за счет деметилирования генома и локального гиперметилирования в области генов-онкосупрессоров, что приводит к их блокированию. Вообще метилирование ДНК является важным маркером для диагностики онкологии ввиду следующих причин:
– Метилирование – одно из ранних событий в канцерогенезе.
– Метилирование генов, вовлеченных в канцерогенез, отсутствует в ДНК из нормальных тканей.
– Определенное число генов, вовлеченных в канцерогенез, инактивируется вследствие метилирования.
– В настоящее время существуют эффективные методы, позволяющие проводить анализ метилирования ДНК.
В качестве примера, выявление метилирования гена p16 в гиперплазированном эпителии бронхолегочной системы может свидетельствовать о возникновении рака легких за 3—5 лет до клинических проявлений.
Полиморфизмы в генах, по инструкциям которых производятся ранее перечисленные ферменты фолатного цикла, оказывают определенное влияние на процесс метилирования. Однако самые серьезные последствия, особенно когда речь идет о риске возникновения рака, оказывают вариации в гене MTHFR, которые имеются примерно у 50% населения. Этот ген кодирует одноименный фермент MTHFR, мутации в котором, как доказано в многочисленных исследованиях, повышают риск возникновения различных видов онкозаболеваний, в том числе рака молочной железы, причем не в меньшей степени, чем мутации в печально известном гене BRCA 23 23 Mojgan Hosseini, Massoud Houshmand, and Ahmad Ebrahimi, «MTHFR Polymorphisms and Breast Cancer Risk,» Archives of Medical Science 7, no. 1 (February 2011): 134—37, doi:10.5114/aoms.2011.20618.
. Подтверждением данного факта является то, что в онкоклетках постоянно обнаруживают изменения в профиле метилирования ДНК. Уменьшение метилирования ДНК (гипометилирование) может привести к высокой активности онкогенов и развитию рака, а гиперметилирование (избыточная экспрессия) – к заглушению (сайленсингу) генов-супрессоров, которые способствуют сдерживанию развития опухолей. Надо иметь в виду, что мутации в гене MTHFR могут снизить активность соответствующего фермента до 70% ниже нормы. Фермент MTHFR преобразует фолат (витамин В9) в биологически активную форму – метилфолат, который необходим как источник углерода, используемого для производства метильных групп, осуществляющих репрессию определенных генов. Вообще фолат необходим для многих функций. Он участвует в образовании оснований ДНК – аденина и гуанина, он необходим для синтеза ДНК, для формирования клеток, для производства красных кровяных телец, для метаболизма, для исключения дефектов нервной трубки плода и расщепления позвоночника. Недостаточное содержание фолатов в пище может не только привести к множеству патологических состояний (фолат-дефицитной анемии, тревожности, заболеваниям щитовидной железы, утомляемости, повышенному риску выкидышей), но и снизить процесс метилирования ДНК, т. е. привести к гипометилированию.
Интервал:
Закладка: