Александр Смородинцев - Беседы о вирусах
- Название:Беседы о вирусах
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1982
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Смородинцев - Беседы о вирусах краткое содержание
Беседы о вирусах.
Об истории открытия и изучения вирусов, о создании вакцин, с помощью которых многие вирусные инфекции уже ликвидированы, новых методах борьбы против вирусных заболеваний, о поисках возбудителей еще не изученных болезней, а также о людях, создавших эту молодую науку, рассказывает доктор медицинских наук, профессор А. Смородинцев.
Беседы о вирусах - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В противоположность микробам для каждого вируса существует свой вполне постоянный и достаточно ограниченный круг животных, растений, насекомых и даже микробов, которых он поражает. Заражая живое существо, вирусы размножаются только в клетках определенных тканей или органов, а не в любом участке организма.
В 30-х годах почти одновременно появились в печати две научные статьи, одна из Англии, другая из Советского Союза. К. Смит и А. Смородинцев доказали, что грипп у людей вызывают вирусы, а не микробы, как это считалось раньше. С тех пор прошло более 40 лет. Выделено много вариантов вирусов гриппа, все они досконально изучены. Ученые подобрали удобную для изучения лабораторную модель — белую мышь. Установили, что в легких этих животных вирусы гриппа интенсивно размножаются. Однако это происходило, только когда вирус гриппа вводили мышке в нос. Если же ее пытались заразить инъекцией вирусной суспензии под кожу, внутривенно или в брюшную полость, вирус гриппа не приживлялся и не размножался.
— Если увидеть вирус внутри клетки с помощью микроскопа нельзя, то как это сделать?
— К сожалению, обычный микроскоп, хотя он и увеличивает предметы более чем в тысячу раз, перед вирусом бессилен,
— Как же тогда получить «портрет» вируса, разглядеть его внутреннее устройство?
— Наука создала для этого электронный микроскоп, ультрацентрифугу и другие сложнейшие приборы.
Уже на первых этапах развития вирусологии ученые столкнулись с непреодолимой трудностью: увидеть вирусы с помощью микроскопа не удавалось. Изучали материалы, которые наверняка содержали живые вирусы, потому что с их помощью легко заражались лабораторные животные или растения, однако никаких вредоносных возбудителей там видно не было. Еще совсем недавно это считали одним из главных свойств вирусов и их отличий от микроорганизмов.

Большие усилия были затрачены для преодоления невидимости вирусов, делавшей их малодоступными для изучения. Путь к этой победе оказался достаточно долгим.
Трудность заключалась в том, что вирусы имеют ничтожно малые размеры — от 10 до 300 нанометров. Казалось бы, почему не сделать микроскоп с еще более сильными линзами, которые смогли бы увеличить предмет не в тысячу, а в 10 тысяч или 50 тысяч раз? Однако все упиралось в непреодолимость физических законов.
Законы оптики безоговорочно утверждают, что при любом освещении, которое используют в оптическом микроскопе, можно увидеть только объекты с поперечником больше длины волны света. У дневного света длина волны составляет 400—700 нанометров, следовательно, вирусы невозможно увидеть ни в один обычный микроскоп, каким бы совершенным он ни был.
На помощь вирусологам приходит электронный микроскоп, теорию устройства которого и первые образцы создают в конце 30-х годов, перед началом второй мировой войны, В. Зворыкин в США и А. Лебедев в СССР. В нем вместо видимого света используют поток электронов, а вместо увеличительных стекол — магнитные катушки. Пройдя через изучаемый предмет, тонкий электрический луч многократно расширяется магнитными полями катушек. Это увеличивает изображение в несколько сотен тысяч раз и позволяет увидеть его на специальном флюоресцирующем экране, подобном экрану телевизора. Так как длина волны электронного луча равна всего лишь 0,01 ангстрема (ангстрем равен 0,1 нанометра), то есть в 500 тысяч раз меньше, чем у видимого света, с помощью электронного микроскопа можно рассмотреть даже небольшие белковые молекулы.
Электронный микроскоп в его современных модификациях — это весьма точный и сложный механизм, стоимость которого измеряется десятками тысяч рублей. Несмотря на это, все лаборатории, изучающие структуру вирусов, имеют его на вооружении. С помощью электронного микроскопа ученым удается рассмотреть большинство известных вирусов, просвечивая их пучком электронов.
В последние годы изобретен сканирующий электронный микроскоп, принцип работы которого основан на том, что пучок электронов не проходит через предмет насквозь, а, падая на его поверхность под определенным углом, отражается от нее и после необходимого увеличения изображения попадает на флюоресцирующий экран. Сканирующий электронный микроскоп позволяет увидеть даже объемное изображение вирусов, сделать фотографии, портреты вирусов с деталями структуры их наружной поверхности.
Исследование морфологии (формы и строения) позволило разделить все известные сейчас вирусы на три группы.
Раньше всего были изучены крупные вирусы. Их размер 200—300 нанометров. К таким «великанам» относятся вирусы оспы человека и животных, вирус эктромелии белых мышей (это заболевание часто встречается в питомниках, где разводят столь необходимых науке лабораторных животных).
Ко второй группе относят вирусы, средняя величина которых от 50 до 150 нанометров. К ним принадлежит большинство вирусов растений, бактериофаги (вирусы, уничтожающие микробов), а также вирусы кори, свинки, гриппа. Сюда же относятся возбудители многих заболеваний верхних дыхательных путей, которые обычно называют «простудными», но которые на самом деле вызываются многочисленными вирусами.
Третья группа состоит из мельчайших вирусов (по величине они ненамного больше крупных белковых молекул) с размером частиц от 20 до 30 нанометров. В этой группе находятся вирусы полиомиелита, желтой лихорадки, энцефалитов и многие возбудители тропических лихорадок.
Ученые подсчитали, что если диаметр крупных вирусов превышает диаметр мелких всего лишь в 30 раз, то разница в их объеме составляет более 25 тысяч раз.
Подавляющая масса вирусных частиц (вирионов), которые поражают человека и животных, имеет форму шара, а у вирусов растений — вытянутый цилиндр. Хотя длина цилиндра вируса табачной мозаики достигает 350 нанометров, в оптическом микроскопе он все же невидим: поперечник цилиндра не превышает 15 нанометров, а такие величины в оптическом микроскопе разглядеть нельзя.
Исследования знаменитого теперь американского биохимика, лауреата Нобелевской премии У. Стенли начались в 1935 году и пролили затем свет на состав вирусов. Из сока растений, пораженных вирусом табачной мозаики, Стенли выделил высокомолекулярные соединения. После тщательной очистки выяснилось, что это сложная комбинация нуклеиновой кислоты и белка. Это вещество получило название нуклеопротеин. Оно могло даже заражать здоровые растения, вызывая болезнь — табачную мозаику.
Читать дальшеИнтервал:
Закладка: