Михаил Розов - Философия науки и техники
- Название:Философия науки и техники
- Автор:
- Жанр:
- Издательство:Гардарики
- Год:1996
- ISBN:5-7762-0013-X
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Розов - Философия науки и техники краткое содержание
Восхитительный учебник по философии науки, которым зачитываются вот уже многие поколения аспирантов. При употреблении на ночь в небольших количествах способствует улучшению процессов засыпания.
Философия науки и техники - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Но тогда возникает очень сложная проблема, которая дискутируется сейчас в методологической литературе: получается, что для установления факта нужны теории, а они, как известно, должны проверяться фактами. Эта проблема решается только в том случае, если взаимодействие теории и факта рассматривается исторически. Безусловно, при установлении эмпирического факта использовались многие полученные ранее теоретические законы и положения. Для того, чтобы существование пульсаров было установлено в качестве научного факта, потребовалось принять законы Кеплера, законы термодинамики, законы распространения света – достоверные теоретические знания, ранее обоснованные другими фактами. Иначе говоря, в формировании факта участвуют теоретические знания, которые были ранее проверены независимо. Что же касается новых фактов, то они могут служить основой для развития новых теоретических идей и представлений. В свою очередь новые теории, превратившиеся в достоверное знание, могут использоваться в процедурах интерпретации при эмпирическом исследовании других областей действительности и формировании новых фактов.
Таким образом, при исследовании структуры эмпирического познания выясняется, что не существует чистой научной эмпирии, не содержащей в себе примесей теоретического. Но это является не препятствием для формирования объективно истинного эмпирического знания, а условием такого формирования.
Структура теоретического исследования
Перейдём теперь к анализу теоретического уровня познания. Здесь тоже можно выделить (с определённой долей условности) два подуровня. Первый из них образует частные теоретические модели и законы, которые выступают в качестве теорий, относящихся к достаточно ограниченной области явлений. Второй – составляют развитые научные теории, включающие частные теоретические законы в качестве следствий, выводимых из фундаментальных законов теории.
Примерами знаний первого подуровня могут служить теоретические модели и законы, характеризующие отдельные виды механического движения: модель и закон колебания маятника (законы Гюйгенса), движения планет вокруг Солнца (законы Кеплера), свободного падения тел (законы Галилея) и др. Они были получены до того, как была построена ньютоновская механика. Сама же эта теория, обобщившая все предшествующие ей теоретические знания об отдельных аспектах механического движения, выступает типичным примером развитых теорий, которые относятся ко второму подуровню теоретических знаний.
Теоретические модели в структуре теории
Своеобразной клеточкой организации теоретических знаний на каждом из его подуровней является двухслойная конструкция – теоретическая модель и формулируемый относительно неё теоретический закон.
Рассмотрим вначале, как устроены теоретические модели.
В качестве их элементов выступают абстрактные объекты (теоретические конструкты), которые находятся в строго определённых связях и отношениях друг с другом.
Теоретические законы непосредственно формулируются относительно абстрактных объектов теоретической модели. Они могут быть применены для описания реальных ситуаций опыта лишь в том случае, если модель обоснована в качестве выражения существенных связей действительности, проявляющихся в таких ситуациях.
Например, если изучаются механические колебания тел (маятник, тело на пружине и т. д.), то чтобы выявить закон их движения, вводят представление о материальной точке, которая периодически отклоняется от положения равновесия и вновь возвращается в это положение. Само это представление имеет смысл только тогда, когда зафиксирована система отсчёта. А это – второй теоретический конструкт, фигурирующий в теории колебаний. Он соответствует идеализированному представлению физической лаборатории, снабжённой часами и линейками. Наконец, для выявления закона колебаний необходим ещё один абстрактный объект – квазиупругая сила, которая вводится по признаку: приводить в движение материальную точку, возвращая её к положению равновесия.
Система перечисленных абстрактных объектов (материальная точка, система отсчета, квазиупругая сила) образуют модель малых колебаний (называемую в физике осциллятором). Исследуя свойства этой модели и выражая отношения образующих ее объектов на языке математики, получают формулу ma + kx = 0, которая является законом малых колебаний.
Этот закон непосредственно относится к теоретической модели, описывая связи и отношения образующих её абстрактных объектов. Но поскольку модель может быть обоснована как выражение сущности реальных процессов колебания тел, постольку полученный закон можно применить ко всем подобным ситуациям.
В развитых в теоретическом отношении дисциплинах, применяющих количественные методы исследования (таких, как физика), законы теории формулируются на языке математики. Признаки абстрактных объектов, образующих теоретическую модель, выражаются в форме физических величин, а отношения между этими признаками – в форме связей между величинами, входящими в уравнения. Применяемые в теории математические формализмы получают свою интерпретацию благодаря их связям с теоретическими моделями. Богатство связей и отношений, заложенное в теоретической модели, может быть выявлено посредством движения в математическом аппарате теории. Решая уравнения и анализируя полученные результаты, исследователь как бы развёртывает содержание теоретической модели и таким способом получает все новые и новые знания об исследуемой реальности.
Теоретические модели не являются чем-то внешним по отношению к теории. Они входят в её состав. Их следует отличать от аналоговых моделей, которые служат средством построения теории, её своеобразными строительными лесами, но целиком не включаются в созданную теорию. Например, аналоговые гидродинамические модели трубок с несжимаемой жидкостью, вихрей в упругой среде и т. д., применявшиеся при построении Максвеллом теории электромагнитного поля, были «строительными лесами», но модели, характеризующие процессы электромагнетизма как взаимосвязи электрических и магнитных полей в точке, зарядов и электрических токов в точке, – были составной частью теории Максвелла. Чтобы подчеркнуть особый статус теоретических моделей, относительно которых формулируются законы и которые обязательно входят в состав теории, назовём их теоретическими схемами . Они действительно являются схемами исследуемых в теории объектов и процессов, выражая их существенные связи.
Соответственно двум выделенным подуровням теоретического знания можно говорить о теоретических схемах в составе фундаментальной теории и в составе частных теорий.
Читать дальшеИнтервал:
Закладка: