Михаил Розов - Философия науки и техники
- Название:Философия науки и техники
- Автор:
- Жанр:
- Издательство:Гардарики
- Год:1996
- ISBN:5-7762-0013-X
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Розов - Философия науки и техники краткое содержание
Восхитительный учебник по философии науки, которым зачитываются вот уже многие поколения аспирантов. При употреблении на ночь в небольших количествах способствует улучшению процессов засыпания.
Философия науки и техники - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Сама картина на первых порах может не иметь законченной формы, но вместе с принципами, фиксирующими «операциональную сторону» видения реальности, она определяет поиск математических гипотез. Новая стратегия теоретического поиска сместила акценты и в философской регуляции процесса научного открытия. В отличие от классических ситуаций, где выдвижение физической картины мира прежде всего было ориентировано «философской онтологией», в квантово-релятивистской физике центр тяжести был перенесён на гносеологическую проблематику. Поэтому в регулятивных принципах, целенаправляющих поиск математических гипотез, явно представлены (в конкретизированной применительно к физическому исследованию форме) положения теоретико-познавательного характера (принцип соответствия, простоты и т. д.).
В ходе математической экстраполяции исследователь создаёт новый аппарат путём перестройки некоторых уже известных уравнений. Физические величины, входящие в такие уравнения, переносятся в новый аппарат, где получают новые связи, а значит, и новые определения. Соответственно этому заимствуются из уже сложившихся областей знания абстрактные объекты, признаки которых были представлены физическими величинами. Абстрактные объекты погружаются в новые отношения, благодаря чему наделяются новыми признаками. Из этих объектов создаётся гипотетическая модель, которая неявно вводится вместе с новым математическим аппаратом в качестве его интерпретации.
Такая модель, как правило, содержит неконструктивные элементы, а это может привести к противоречиям в теории и к рассогласованию с опытом даже перспективных математических аппаратов.
Таким образом, специфика современных исследований состоит не в том, что математический аппарат сначала вводится без интерпретации (неинтерпретированный аппарат есть исчисление, математический формализм, который принадлежит математике, но не является аппаратом физики). Специфика заключается в том, что математическая гипотеза чаще всего неявно формирует неадекватную интерпретацию создаваемого аппарата, а это значительно усложняет процедуру эмпирической проверки выдвинутой гипотезы. Сопоставление следствий из уравнений с опытом всегда предполагает интерпретацию величин, которые фигурируют в уравнениях. Поэтому опытом проверяются не уравнения сами по себе, а система: уравнения плюс интерпретация. И если последняя неадекватна, то опыт может выбраковывать вместе с интерпретацией весьма продуктивные математические структуры, соответствующие особенностям исследуемых объектов.
Чтобы обосновать математическую гипотезу опытом, недостаточно просто сравнивать следствия из уравнений с опытными данными. Необходимо каждый раз эксплицировать гипотетические модели, которые были введены на стадии математической экстраполяции, отделяя их от уравнений, обосновывать эти модели конструктивно, вновь сверять с созданным математическим формализмом и только после этого проверять следствия из уравнений опытом.
Длинная серия математических гипотез порождает опасность накопления в теории неконструктивных элементов и утраты эмпирического смысла величин, фигурирующих в уравнениях. Поэтому в современной физике на определённом этапе развития теории становятся необходимыми промежуточные интерпретации, обеспечивающие операциональный контроль за создаваемой теоретической конструкцией. В системе таких промежуточных интерпретаций как раз и создаётся конструктивнообоснованная теоретическая схема, обеспечивающая адекватную семантику аппарата и его связь с опытом.
Все описанные особенности формирования современной теории можно проиллюстрировать, обратившись к материалу истории квантовой физики.
Квантовая электродинамика является убедительным свидетельством эвристичности метода математической гипотезы. Её история началась с построения формализма, позволяющего описать «микроструктуру» электромагнитных взаимодействий.
Создание указанного формализма довольно отчётливо расчленяется на четыре этапа. Вначале был введён аппарат квантованного электромагнитного поля излучения (поле, не взаимодействующее с источником). Затем на втором этапе, была построена математическая теория квантованного электронно-позитронного поля (было осуществлено квантование источников поля). На третьем этапе было описано взаимодействие указанных полей в рамках теории возмущений в первом приближении. Наконец, на заключительном, четвёртом этапе был создан аппарат, характеризующий взаимодействие квантованных электромагнитного и электронно-позитронного полей с учётом последующих приближений теории возмущений (этот аппарат был связан с методом перенормировок, позволяющим осуществить описание взаимодействующих полей в высших порядках теории возмущений).
В период, когда уже был пройден первый и второй этапы построения математического формализма теории и начал успешно создаваться аппарат, описывающий взаимодействие свободных квантованных полей методами теории возмущений, в самом фундаменте квантовой электродинамики были обнаружены парадоксы, которые поставили под сомнение ценность построенного математического аппарата. Это были так называемые парадоксы измеримости полей. В работах П. Иордана, В. А. Фока и особенно в совместном исследовании Л. Д. Ландау и Р. Пайерлса было показано, что основные величины, которые фигурировали в аппарате новой теории, в частности, компоненты электрической и магнитной напряжённости в точке, не имеют физического смысла. Поля в точке перестают быть эмпирически оправданными объектами, как только исследователь начинает учитывать квантовые эффекты.
Источником парадоксов измеримости была неадекватная интерпретация построенного формализма. Такая интерпретация была неявно введена в самом процессе построения аппарата методом математической гипотезы.
Синтез квантово-механического формализма с уравнениями классической электродинамики сопровождался заимствованием абстрактных объектов из квантовой механики и электродинамики и их объединением в рамках новой гипотетической конструкции. В ней поле характеризовалось как система с переменным числом частиц (фотонов), возникающих с определённой вероятностью в каждом из возможных квантовых состояний. Среди набора классических наблюдаемых, которые необходимы были для описания поля как квантовой системы, важнейшее место занимали напряжённости полей в точке. Они появились в теоретической модели квантованного электромагнитного поля благодаря переносу абстрактных объектов из классической электродинамики.
Такой перенос классических идеализаций (абстрактных объектов электродинамики Максвелла-Лоренца) в новую теоретическую модель как раз и породил решающие трудности при отображении её на эмпирические ситуации по исследованию квантовых процессов в релятивистской области. Оказалось, что нельзя отыскать рецепты связи компонентов поля в точке с реальными особенностями экспериментов и измерений, в которых обнаруживаются квантово-релятивистские эффекты. Классические рецепты предполагали, например, что величина электрической напряжённости в точке определяется через отдачу точечного пробного заряда (приобретённый им импульс служит мерой напряжённости поля в данной точке). Но если речь идёт о квантовых эффектах, то в силу соотношения неопределённостей локализация пробного заряда (точная координата) приводит к возрастающей неопределённости его импульса, а значит, к невозможности определить напряжённость поля в точке. Далее, как показали Ландау и Пайерлс, к этому добавлялись неопределённости, возникающие при передаче импульса от пробного заряда прибору-регистратору. Тем самым было показано, что гипотетически введённая модель квантованного электромагнитного поля утрачивала физический смысл, а значит, терял такой смысл и связанный с ней аппарат.
Читать дальшеИнтервал:
Закладка: