Герман Хакен - Тайны природы. Синергетика: учение о взаимодействии

Тут можно читать онлайн Герман Хакен - Тайны природы. Синергетика: учение о взаимодействии - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, год 2003. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Тайны природы. Синергетика: учение о взаимодействии
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2003
  • ISBN:
    5-93972-230-
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Герман Хакен - Тайны природы. Синергетика: учение о взаимодействии краткое содержание

Тайны природы. Синергетика: учение о взаимодействии - описание и краткое содержание, автор Герман Хакен, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга представляет собой перевод на русский язык знаменитой «Тайны природы» Германа Хакена. Ее первейшая цель — донести до читателя идеи синергетики, позволяющие познать удивительные, необычайно разнообразные, организованные структуры, созданные самой природой.
Для самого широкого круга читателей.

Тайны природы. Синергетика: учение о взаимодействии - читать онлайн бесплатно полную версию (весь текст целиком)

Тайны природы. Синергетика: учение о взаимодействии - читать книгу онлайн бесплатно, автор Герман Хакен
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рис. 4.16. Разница температур верхнего и нижнего слоев жидкости растет, а вместе с ней растет и скорость движения жидкости. В нашем механическом аналоге это означает, что шар оказывается в состоянии неустойчивого равновесия

Когда же цилиндрические ячейки наконец стабилизируются, скорость их вращения достигает своего устойчивого конечного значения и не может расти дальше. Теперь шар из нашей модели находится в точке равновесия на поверхности опрокинутой чаши. Сопоставив обе ситуации, мы получим картину изменения скорости движения ячеек, представленную на рис. 4.17.

Рис 417 Скорость движения жидкости не может расти до бесконечности - фото 38

Рис. 4.17. Скорость движения жидкости не может расти до бесконечности; неустойчивое равновесие шара с рис. 4.16 наконец стабилизируется, и шар снова оказывается в состоянии покоя

Поскольку направления вращения ячеек слева направо и справа налево равнозначны и равновероятны, картина должна быть симметричной, т.е. для скорости действительна схема, изображенная на рис. 4.18.

Рис 418 Нарушение симметрии шар может занять лишь одно из двух совершенно - фото 39

Рис. 4.18. Нарушение симметрии: шар может занять лишь одно из двух совершенно равнозначных положений. Для жидкости это означает, что цилиндрические ячейки могут двигаться либо слева направо, либо справа налево

Таким образом, здесь вновь имеет место уже обсуждавшееся ранее нарушение симметрии. Шар, положение которого символизирует скорость вращения ячеек, может, в принципе, занять любое из двух положений, однако только одно из них, что и нарушает симметрию в данном случае. Нарушение симметрии происходит и тогда, когда жидкость совершает свой выбор в пользу одного типа движения — единственного варианта среди практически бесконечного числа возможных. Примером тому может послужить поведение жидкости, помещенной в сосуд круглой формы. В этом случае ориентация осей ячеек в горизонтальной плоскости может быть любой; определяется она флуктуацией на микроскопическом уровне. Однако можно задать эту ориентацию и искусственным путем — к примеру, нагревая снизу определенный участок жидкости. На рис. 4.19 показан результат такого нагревания, смоделированного на компьютере.

Рис 419 Результаты компьютерного моделирования образование ячеистых - фото 40

Рис. 4.19. Результаты компьютерного моделирования: образование ячеистых структур и нагреваемой снизу жидкости, помещенной в сосуд, дно которого имеет форму круга. Разница между температурами верхнею и нижнего слоев жидкости подобрана так, что становится возможным возникновение ячеек. Если направление горизонтальной оси ячейки задано изначально, то с течением времени жидкости удастся создать систему ячеек, соответствующую этому образцу. В средней колонке показан аналогичный случай, но здесь заданный образец был сориентирован иначе. В правой колонке ситуация изменена: заданы два образца, один из которых несколько «сильнее» другого. В результате конкурентной борьбы именно он побеждает, и в жидкости образуется система ячеек, соответствующая этому образцу

В иных физических условиях искусственное воздействие может привести не только к конкурентной борьбе между различными ячейками, вследствие которой в конечном итоге победит одна из ячеек, но и к тому, что несколько по-разному сориентированных ячеек создадут каждая свою систему, и системы эти смогут сосуществовать в пределах одного сосуда. Известнейший пример такого сосуществования представлен на рис. 4.20.

Рис 420 Гексагональная ячеистая структура напоминающая пчелиные соты в - фото 41

Рис. 4.20. Гексагональная ячеистая структура, напоминающая пчелиные соты: в центре каждой ячейки жидкость движется вверх, а по краям — вниз

Ячеистые структуры различной конфигурации при этом «опираются» друг на друга, что приводит к взаимной стабилизации; нечто похожее можно наблюдать в треножниках, когда друг на друга опираются три шеста, что дает в итоге весьма устойчивую конструкцию (рис. 4.21).

Рис 421 Схематическое изображение процесса перегруппировки ячеек - фото 42

Рис. 4.21. Схематическое изображение процесса перегруппировки ячеек, сориентированных различным образом, в результате которого образуется гексагональная ячеистая система, показанная на рис. 4.20. Знаки «плюс» символизируют движение жидкости вверх, а знаки «минус» — вниз. Сплошной и штриховой линиями показаны границы соответствующих цилиндрических ячеек: вдоль первых жидкость поднимается вверх, вдоль вторых — опускается вниз. Жирной линией даны границы возникающих при этом гексагональных ячеек, вдоль которых жидкость движется вниз

Если суммировать движение отдельных ячеек — а сделать это непросто, — то конечным результатом окажется конфигурация, напоминающая пчелиные соты, и потому называемая «гексагональной». По центру каждой из таких сот жидкость поднимается вверх, а по краям опускается вниз. Если, к примеру, нагреть снизу лыжную мазь в круглой баночке, то возникнет именно гексагональная ячеистая структура.

Этот пример показывает, насколько широким оказывается в данном случае спектр понятия «жидкость». Собственно, здесь можно говорить даже о вулканической лаве, которая, застывая, образует шестигранные блоки. В соленых озерах, нагреваемых снизу теплом земных недр, порой выкристаллизовываются пластины соли в виде более или менее шестиугольных ячеистых образований. На рис. 4.22 представлен именно такой образец, заселенный бактериальной культурой красного цвета.

Рис 422 Шестиугольные гексагональные соляные образования Образен со дна - фото 43

Рис. 4.22. Шестиугольные (гексагональные) соляные образования. Образен со дна пересохшего соленого озера в восточной Африке

На поверхности Солнца астрономы наблюдают структуры, называемые пятнами или гранулами. Можно предположить, что и они обязаны своим возникновением описанному выше феномену (рис. 4.23).

Рис 423 Пятна на Солнце При дальнейшем нагревании жидкости из нашего примера - фото 44

Рис. 4.23. Пятна на Солнце

При дальнейшем нагревании жидкости из нашего примера гексагональная структура будет вытеснена цилиндрическими ячейками, т. е. вместо картины, представленной на рис. 4.20, в жидкости возникнет движение, схема которого показана на рис. 4.6. Математический анализ (подробности которого мы вынуждены, естественно, опустить) допускает отчасти забавное, но все же наводящее на размышления объяснение. Под влиянием изменившихся условий между тремя начальными конфигурациями, стабилизировавшими друг друга ради создания гексагональной структуры, возникает конкурентная борьба; в результате опять-таки случайной флуктуации в этой борьбе побеждает только одна из конфигураций. Именно она начинает

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Герман Хакен читать все книги автора по порядку

Герман Хакен - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Тайны природы. Синергетика: учение о взаимодействии отзывы


Отзывы читателей о книге Тайны природы. Синергетика: учение о взаимодействии, автор: Герман Хакен. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x