Г Врайт - Логико-философские исследования (Избранные труды)
- Название:Логико-философские исследования (Избранные труды)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Г Врайт - Логико-философские исследования (Избранные труды) краткое содержание
Логико-философские исследования (Избранные труды) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
То значение понятия "система", которое мы используем, не легко отождествить с каким-либо общим или распространенным(22), но, несомненно, оно связано с несколькими известными значениями этого термина.
Примером системы в нашем понимании может служить осуществление решения и расчет возможных последствий (вариантов) в течение ограниченного промежутка времени, представляющие собой альтернативные реакции на следствия нашего решения(23). Деятельность, называемая планированием, обычно имеет структуру, сходную с "системой" в нашем понимании. Другим примером может служить наблюдение в физически изолированной области пространства за последовательно
[85]
стью изменений, например температуры, влажности, атмосферного давления, химического состава и т.п. Научные эксперименты часто имеют дело с системами такого характера или осуществляются в их рамках; ниже мы попытаемся описать, в чем состоит активный компонент деятельности "экспериментирования".
5. Для описания процедуры, которую я предлагаю называть каузальным анализом, удобно представить систему в виде топологических деревьев, являющихся фрагментами истории (возможного) мира.
Рассмотрим следующую систему:
Система актуально проходит через пять стадий - от a до е1, . Возьмем конечное состояние e1. Мы хотим исследовать "причины" происхождения и структуру этого индивидуального события. Например, было ли прохождение системой через d1, на четвертой стадии достаточным условием для ее реализации в e1? Очевидно, нет, так как после d1, конечным состоянием могло быть также и e;. (Это следует из нашего соглашения о том, что e1 и e2 - это различные полные состояния системы. См. выше, с. 83.)
Далее, было ли прохождение через d1 на четвертой стадии необходимым условием для реализации системы в e1? Чтобы ответить на этот вопрос, нужно проанализировать структуру всех других возможных предпоследних и конечных состояний системы. Если конечное состояние, тождественное е1, реализуется только после состояний, тождественных d1 , то ответ будет утвердительным, если нет - отрицательным.
[86]
Следует заметить, что смысл вопроса о том, является ли d1 тем или иным условием для реализации системы в e1, состоит в следующем: является ли то, что состояние системы на четвертой стадии в родовом (generically) смысле тождественно d1 (т.е. ее структура, если говорить об элементах рассматриваемого пространства состояния, та же, что и у d1), тем или иным условием для реализации ее в состоянии, которое тождественно e1.
Каузальный анализ может дать ответы на множество различных вопросов. В данной работе я не буду исчерпывающе или систематически рассматривать его, а ограничусь лишь несколькими специальными случаями. Помимо каузальных антецедентов конечного состояния в целом, нас могут интересовать некоторые его особенные свойства, т.е. "элементарные" состояния, такие, как p или q. Допустим, что p входит в e1. Является ли d1 на четвертой стадии достаточным условием для появления p в конечном состоянии? Если p появляется в каждом возможном конечном состоянии системы, которое следует за (d1 или за) предпоследним состоянием, тождественным d1, то тогда ответ утвердительный, если нет - отрицательный.
Зададим следующий вопрос: было ли d1, необходимым условием появления p в конечном состоянии? Если p появляется только в тех возможных конечных состояниях системы, которые следуют за состояниями, тождественными d1, т.е. если p отсутствует в каждом конечном состоянии, которое следует за состоянием, по структуре отличным от d1, то ответ утвердительный, если нет отрицательный.
Поиск "причин" некоторого данного события или его свойств осуществлялся нами в процессе движения во времени от настоящего к прошлому. Отметим обстоятельство, фундаментально важное для метафизики причинности.
Если некоторое событие на определенной ступени в истории системы не является необходимым условием ее конечного состояния (или некоторых его свойств), то это не исключает возможности, что какое-то событие на более ранней стадии являлось таким условием. Например, пусть d, на четвертой стадии не является необходимым условием для появления p в e1, напри
[87]
мер потому, что p появляется также в f1. Несмотря на это, c1 на третьей ступени может оказаться таким необходимым условием, что будет иметь место, когда p не появляется в g.
Напротив, если некоторое событие на определенной стадии не является достаточным условием конечного состояния системы (или некоторых его свойств), то, значит, и на более ранней стадии не существует такого условия. Например, если d1 не есть достаточное условие для появления p в e1, например потому, что p не появляется в е2, то c1 также не есть такое условие.
Каузальный анализ можно проводить не только от данного состояния системы к прошлому, но также и к будущему ее состоянию. В силу параллелизма между необратимостью времени, с одной стороны, и асимметрией каузального отношения, с другой, каузальный анализ первого типа направлен главным образом на поиск причин данных следствий, в то время как анализ второго типа - на поиск следствий данных причин. События, следующие за некоторым данным событием и каузально с ним связанные, называют часто "консеквентами" (ср. гл. III, разд. 2).
В данной работе не будет рассматриваться каузальный анализ, направленный в будущее.
Теперь рассмотрим лишь фрагмент системы, изображенной на с. 86, например начиная с c1. Допустим, что p появляется в e1, но не появляется в f1, или f2 (его наличие или отсутствие в е1 несущественно). В рамках этой более узкой системы необходимым условием появления p в конечном состоянии будет такое предыдущее состояние, которое тождественно d1 . Но из этого не следует, что то же самое будет справедливо и для более широкой системы. Если p есть свойство возможного конечного состояния g и если непосредственно предшествующее ему состояние отличается от d1 (что мы вольны вообразить), то для более широкой системы такое отношение обусловленности не будет справедливым.
То же самое верно и для отношения достаточной обусловленности. Если p появляется в е1, и е2 , то в рассматриваемом фрагменте предпоследнее состояние d1 является достаточным условием появления p в конечном состоянии. Но если p не является свойством g,
[88]
а непосредственно предшествующее g состояние тождественно d1, то для более широкой системы такое отношение обусловленности не будет справедливым.
Легко видеть, что если в более широкой системе имеет место некоторое отношение обусловленности, то оно необходимо будет иметь место и в меньшей системе, которая является ее фрагментом, но не наоборот(24).
Допустим, что в системе, начинающейся c1, предпоследнее состояние, тождественное d1 , является необходимым условием конечного состояния, содержащего р, но что в системе, начинающейся с а, это не выполняется. Поскольку первая система является фрагментом второй, то можно сказать, что для этой более широкой системы рассматриваемое отношение обусловленности справедливо в следующем относительном(25) смысле: если эта система проходит в своем развитии от начального состояния а через b к c1, то, если она реализуется в состоянии, содержащем p, она необходимо пройдет через d1 . Здесь антецедент описывает достаточное условие (получения) необходимого условия, выраженного консеквентом(26).
Читать дальшеИнтервал:
Закладка: