Коллектив авторов - Теорема Геделя о неполноте [Фейк]
- Название:Теорема Геделя о неполноте [Фейк]
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1989
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Теорема Геделя о неполноте [Фейк] краткое содержание
Теорема Геделя о неполноте [Фейк] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Отметим, однако, что в данном случае требование "невычислимости" имеет несколько иной смысл, чем в том случае, когда мы связывали это требование с теоремой Геделя о неполноте формальных систем. Мы уже отмечали, что теорема Геделя и гипотеза алгоритмической невычислимости функции сознания не накладывают, по существу, какого-либо запрета на практическое создание систем искусственного интеллекта. Однако, новые, рассмотренные нами аргументы в пользу "невычислимости" - такой запрет, по существу, предполагают.
Действительно, достоверность рефлексии предполагает практическую невозможность заменить мозг функционально эквивалентным алгоритмическим устройством. Эта практическая невозможность, поскольку она не может быть непосредственно обусловлена алгоритмической невычислимостью функции сознания, может быть обусловлена лишь физическими причинами - ограниченностью ресурсов, характером физических законов и т.п. (Или же, как мы отмечали выше, может быть обусловлена некими "сверхестественными", "экстрасенсорными" свойствами, возможно присущими нормальной человеческой психике).
Итак, мы видим, что единственность способа физической реализации функции сознания - является более сильным требованием, чем алгоритмическая невычислимость данной функции. Заметим, также, что единственность физической реализации функции сознания возможна и при условии, что функция сознания алгоритмически вычислима. Действительно, алгоритмическая вычислимость еще не гарантирует, что соответствующие вычисления реально могут быть осуществлены. На это может не хватить ни времени, ни материальных и энергетических ресурсов. Здесь нужно, также, учитывать, что имитация функции сознания имеет смысл только в том случае, если она осуществляется в реальном масштабе времени.
Можно предположить, что принцип инвариантности функции по отношении к способу ее реализации имеет пределы применимости и его применимость зависит от сложности рассматриваемой функции. Действительно, достаточно простые функции, такие как арифметическое сложение или вычитание, извлечение корня и т.п. можно осуществить самыми различными способами, например, с помощью механического арифмометра, вручную, используя калькулятор, компьютер различной конструкции и т.п. Более сложные задачи, например, решение систем сложных дифференциальных уравнений, - уже арифмометр или калькулятор решить не смогут. Не удастся их решить и вручную - за сколь-нибудь обозримое время. Т.е. чем сложнее функция - тем уже круг физических устройств, с помощью которых данная функция может быть практически реализована. Можно предположить, что при достижении уровня сложности человеческой психики, число "устройств", способных реализовать подобную функцию, сокращается до одного устройства - и таким единственным "устройством" является человеческий мозг.
Поскольку, в соответствии с тезисом Черча, различия между универсальными вычислительными устройствами могут касаться лишь скорости и объема памяти, то можно предположить, что мозг является в некотором роде "предельным" вычислительным "устройством", т.е. относится к классу вычислительных устройств, обладающих максимально возможной "вычислительной мощностью". Иными словами, любое устройство, способное эффективно имитировать функцию мозга, с необходимостью должно быть основано на тех же самых физических (а также структурных и алгоритмических) принципах, которые лежат в основе процессов переработки информации в человеческом мозге.
Таким образом, данная концепция не исключает возможность создания "искусственного интеллекта", но предполагает, что любой "искусственный мозг", равный по своим возможностям человеческому мозгу, должен использовать те же самые физические и структурные принципы, что и мозг естественный. (Отсюда, в частности, следует, что эволюция компьютеров должна в конечном итоге привести нас к раскрытию природы человеческого сознания. Компьютер "окончательного поколения" с необходимостью будет не только по функции, но и по физическому устройству, - в наиболее существенных своих чертах - соответствовать человеческому мозгу).
Подведем итог обсуждения проблемы "вычислимости" функции человеческого сознания. Мы видим, что имеются дополнительные основания считать невозможной алгоритмическую имитацию функции сознания. Во-первых, невозможность алгоритмической имитации сознания вытекает из содержательной бесконечности человеческого "Я"- что, в свою очередь, является следствием сущностной уникальности нашего "Я".
Во-вторых, такого рода невозможность проистекает из интуитивно очевидной достоверности нашего рефлексивного самоотчета - если при этом учесть, что чувственные качества отражают способ обработки информации в мозге и, следовательно, достоверность самоотчета означает возможность достоверного знания о механизмах, лежащих в основе психической деятельности. Отсюда вытекает требование единственности способа реализации функции сознания.
Если единственным практически значимым следствием гипотезы алгоритмической невычислимости функции сознания является "непознаваемость" механизмов психической деятельности, то условие единственности способа реализации функции сознания приводит нас к выводу о практической (физической) невозможности компьютерной имитации функции человеческого мозга.
По существу, условие алгоритмической невычислимости и условие единственности способа реализации функции ("физическая" невычислимость) не зависят друг от друга. Алгоритмическая невычислимость не исключает "физическую" вычислимость (на конечных временных интервалах). С другой стороны, алгоритмическая вычислимость - не гарантирует физическую возможность осуществления компьютерной имитации данной функции.
Далее, возникает неизбежный вопрос: каким образом вообще возможна материальная система, функция которой алгоритмически невычислима или же эта функция такова, что она не может быть физически реализована каким-либо альтернативным способом?
Рассмотрим вначале первый вопрос - о возможности существования материальных систем, функция которых является алгоритмически невычислимой. Существенная проблема возникает здесь в связи с тем, что любая материальная система подчинена законам физики, которые, по сути, представляют собой алгоритмы, описывающие способ функционирования любых физических объектов. Поскольку мозг - физический объект, то полное его физическое описание и будет представлять собой его "формализованную модель" и, следовательно, ни о какой принципиальной "непознаваемости" работы мозга и речи быть не может.
Если здесь и есть какие-либо "границы познаваемости", то они обусловлены скорее ограниченностью наших ресурсов - неспособностью описать с достаточной степенью точности и подробности столь сложный физический объект как человеческий мозг, а отнюдь не природой самого мозга.
Читать дальшеИнтервал:
Закладка: