Марк Алданов - Ульмская ночь (философия случая)
- Название:Ульмская ночь (философия случая)
- Автор:
- Жанр:
- Издательство:Новости
- Год:1996
- ISBN:5-7020-0832-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марк Алданов - Ульмская ночь (философия случая) краткое содержание
В шестую книгу сочинений вошла часть богатого литературно-критического наследия писателя и крупное историко-философское сочинение "Ульмская ночь" - о роли случая в истории.
Ульмская ночь (философия случая) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Л.- Это положение самого обыкновенного здравого смысла. Лаплас и называет теорию вероятностей "здравым смыслом, сведенным к вычислению", "le bon sens rduit au calcul" (77) . Laplace, Essai philosophique sur les Probabilits, v. II, p. 105.
.
А.- Здравый смысл говорит также, что через одну точку можно провести на плоскости только одну линию, параллельную данной прямой. Быть может, теория вероятностей еще ждет своего Лобачевского. Первые философские возражения были против нее сделаны еще в 18-ом столетии, повторяю, д'Аламбером. Его скептические замечания вызвали против него резкие и даже грубые нападки. "Некоторые большие геометры, - пишет он сам, - признали мои сомнения заслуживающими внимания. Другие большие геометры нашли их абсурдными, - зачем смягчать употребленные ими выражения?" (78) . D'AIambert, Doutes et questions sur le calcul des Probabilits. Mlange, de litrature, d'histoire et de philosophie, Amsterdam, 1767, vol. V, p. 276.
. Я не мог установить, кого д'Аламбер разумел под первыми "большими геометрами". К вторым же принадлежал Даниель Бернулли, который отозвался об его соображениях даже в еще более сильных выражениях ("ridicule"). К чему сводилась критика д'Аламбера? Он указал на разницу между математически-возможным и физически-возможным. Математически совершенно возможно, что, в игре в чет и нечет, чет выпадет подряд сто или тысячу раз, а нечет не выпадет ни разу. Однако, этого физически быть не может. Собственно, полагалось бы дать доказательство физической невозможности этого; д'Аламбер привел лишь аналогию: "Можно дать только следующую ее причину: не бывает в природе, чтобы эффект был всегда и неизменно один и тот же, как нет в природе сходства между всеми людьми, между всеми деревьями". Мы опять тут видим, как опыт или наблюдение легко меняются местами с математической дедукцией в проблемах теории вероятностей. Примером могла бы быть и так называемая "Петербургская проблема", чрезвычайно занимавшая математиков восемнадцатого века. Математически было бы совершенно возможно, чтобы, при игре Павла с Петром, с такими-то правилами о ставках (не буду утомлять вас подробностями), Павел выиграл бесконечное число раз и выигранная им сумма превысила всякую данную величину. Петербургские и иностранные математики долго бились над этой проблемой; с философской точки зрения она собственно не разрешена и до сих пор. Один из ученых даже договорился до такого довода: такая возможность при игре Павла с Петром исключается, так как состояние Петра, как бы богат он ни был, все же имеет пределы; он не мог бы проиграть больше того, что у него было! - По свойству человеческой природы, мы легче воспринимаем не математические, а физическую возможность и невозможность. Если в рулетке, скажем, номер 22 выпадет пять раз подряд, то верно ни один игрок не поставит на него в шестой, хотя математически он может так же легко выпасть снова, как может выпасть какой угодно иной номер. В романе капитана Марриетта "Простак Питер", во время морского сражения ядро пробивает дыру в палубе враждебного судна. Находящийся на этом судне молодой моряк уткнул в эту дыру голову, "ибо, по вычислениям профессора Иннмана, есть 32,647 с десятыми шансов против того, чтобы в ту же дыру попало еще второе ядро". Я не читал этого романа, но нашел упоминание о моряке и ядре в книге доктора Левинсона (79) . Н. С. Levinson, La Chance, Paris, 1952.
. Конечно, профессор Иннман никаких таких "вычислений" сделать не мог - и не только потому, что никогда не существовал. Но не-ученому человеку вы в подобном случае и не вдолбили бы в голову, что второе ядро может с одинаковой математической вероятностью угодить и в эту дыру, и в любую другую точку судна. Это шутка романиста. Возможна, однако, гораздо более серьезная философская критика теории вероятностей. Вероятное, правдоподобное предполагает существование верного, правды. Но если правда сама основывается на теории вероятностей, то получается внутреннее противоречие или заколдованный круг. То, что относится ко всем научным законам, должно ведь относиться и к закону больших чисел. "Случай есть нечто стоящее вне законов". Тогда не ищите закона для случая. "Случай есть псевдоним нашего незнания"? Какая же у незнания может быть теория? Основной закон Бернулли висел в воздухе до того, как Чебышев дал ему чисто-математическое доказательство. Из десяти принципов Лапласа, из которых я привел лишь один первый (основной принцип всей теории), лишь немногие, никак, например, не третий и четвертый (80) . Laplace, Essai philosophiques sur les Probabilits, Paris, 1921. v. I, p. 11-13. Этот принцип, согласно которому сложная вероятность представляет собой произведение простых вероятностей, обычно включается в теорию, как второй.
(тоже основной и чрезвычайно важный), выдержали бы строгий и критический экзамен. Теория вероятностей могла бы откровенно это признать (но не признала), и это нимало не уменьшило бы ее огромного значения, как новые геометрии не уменьшили значения геометрии Эвклида, - она ведь осталась полезнейшей и необходимейшей из геометрий. Так и теория вероятностей оказывает человечеству очень большие услуги, хотя и не в тех областях, к которым ее пытались применить Кондорсе, Лаплас и Пуассон. Очень высока и ее внутренняя ценность, не уступающая ценности учений Лобачевского и Гильберта. Главная же ее заслуга в том, что она до сих пор - самая мощная, самая общая и самая успешная попытка человеческой мысли ограничить роль случая во многих областях познавательного. Это должен был с особенной ясностью чувствовать Паскаль. Бессмертная книга "Мыслей" вся насквозь проникнута "метафизическим ужасом" перед мощью Случая с большой буквы. Это, конечно, не имеет отношения к его соображениям о задаче де Мере: трик-трак метафизического ужаса вызывать ни у кого не мог. У людей же 18-го века, вместо метафизики, столь им ненавистной, было просто глубокое сознание того, что надо бы свести случай к минимуму, надо, чтобы и войн не было, и чтобы невинных людей не отправляли на казнь. Когда Кондорсе в последние недели жизни, скрываясь от властей, ожидая каждый час ареста и казни, писал "Esquisse d'uri tableau historique du progrs de l'sprit humain", со всей прежней трогательной и непонятной верой в близкое торжество Разума, он верно и думать забыл о своей книге по теории вероятностей. Но если бы о ней вспомнил, то, конечно, пришел бы к выводу, что оба эти его труда, столь несходные по форме, исходили из одних и тех же душевных настроений и служили одной и той же цели. От этой веры 18-го века наука, конечно, отошла. Она и в детерминизме теперь уверена не очень твердо.
Л.- Если б наука отказалась от детерминизма, то она тем самым вообще покончила бы с собой, и это было бы, разумеется, наиболее трагическое харакири в истории мысли: при отрицании детерминизма никакое научное исследование вообще невозможно. Вы, вероятно, здесь имеете в виду уравнения Гейзенберга? Но с ними просто произошло недоразумение (81) . Знаменитый физик, профессор Ланжевен, в давнем разговоре с автором этой книги, сказал "Принцип Гейзенберга не очень хорошо поняли и физики. Философы же его совершенно не поняли".
. Вопрос об индетерминации, к которому они имели отношение в одной частной физико-математической теории, смешали с общим спором о детерминизме и индетерминизме.
Интервал:
Закладка: