Евгений Иванов - Квантовая философия

Тут можно читать онлайн Евгений Иванов - Квантовая философия - бесплатно ознакомительный отрывок. Жанр: Философия. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
Евгений Иванов - Квантовая философия
  • Название:
    Квантовая философия
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785449802446
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Евгений Иванов - Квантовая философия краткое содержание

Квантовая философия - описание и краткое содержание, автор Евгений Иванов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге рассматривается оригинальная философская интерпретация квантовой механики, являющаяся модификацией интерпретации Эверетта-Менского. В основе интерпретации лежит идея интерсубъективного характера актов редукции волновой функции. На основе полученной концепции «сознания в квантовом мире» решается ряд фундаментальных проблем философии сознания.

Квантовая философия - читать онлайн бесплатно ознакомительный отрывок

Квантовая философия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Евгений Иванов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Например, если мы измерили координату частицы, то мы ничего не можем сказать о том, в каком состоянии эта частица находилась до измерения: была ли ее волновая функция локализована до измерения в той области, где мы ее обнаружили, была ли она локализована сразу в нескольких местах или же она была равномерно «размазана» по всей Вселенной. Можно только утверждать, что в точке обнаружения вероятность присутствия частицы не была изначально равна нулю. Таким образом до измерения квантовая система не обладает не только какими-либо определенными значениями классических наблюдаемых (координаты, импульса, энергии и т. п.), но она не обладает даже определенным вероятностным распределением этих величин, т. е. сама по себе не обладает ни классическими свойствами, ни определенным квантовым состоянием. Если учитывать и случаи высоких энергий (а это неизбежно, если мы заранее о системе ничего не знаем), то у нас в общем случае не будет сохраняться и число частиц и т.о. нельзя будет утверждать, что до измерения какое-то определенное число квантовых объектов вообще существовало.

Подчеркнем, что в отличие от классической ситуации, квантовую «неописуемость» принципиально не возможно истолковать как следствие нашей неосведомленности о каком-то вполне определенном «в себе» физическом состоянии. Это следует из «дополнительного» характера квантовых измерений, соответствующих некоммутирующим операторам. Такие измерения не могут быть осуществлены одновременно с большой точностью и если одна из соответствующих этим измерениям наблюдаемых получает в результате измерения достаточно точно определенное значение, то другая, дополнительная ей наблюдаемая, напротив, будет объективно неопределенной (т. е. будет описываться некой суперпозицией). Следовательно, до измерения квантовая система в принципе не может иметь определенных значений всех этих «дополнительных» наблюдаемых одновременно. Т.е. неопределенность наблюдаемых в данном случае объективна, не есть следствие нашего незнания, а есть неопределенность самой квантовой системы.

Конечно «неописуемость» квантовой реальности не абсолютна. Что-то мы можем о квантовых объектах утверждать априори, до всяких измерений. Нам заранее известно, к примеру, какого сорта частицы и их связанные комплексы (атомы, молекулы) могут вообще наблюдаться, какими свойствами эти частицы и комплексы могут обладать, заранее известно, что будут соблюдаться законы сохранения, известны значения фундаментальных физических констант и т. п. «Неописуемость» квантовой реальности означает, что эта реальность до измерения обладает лишь неким спектром возможных, актуализируемых далее только в процессе наблюдения, свойств, т. е. обладает лишь потенциальным, «непроявленным» бытием, причем до измерения она не обладает даже и определенными вероятностными тенденциями проявления этих потенциально присущих ей свойств.

Итак, первый пункт нашей квантовой онтологии гласит: квантовая реальность сама по себе, безотносительно к измерениям (включающим непременно и наблюдение результатов измерения неким субъектом), «неописуема» – не обладает какими-либо определенными классическими свойствами (координата, импульс и т.п.) и даже не обладает каким-либо определенным квантовым состоянием. Безотносительно к измерениям квантовая реальность есть чистая потенциальность: она обладает лишь способностью обнаруживать те или иные классические наблюдаемые свойства (локализацию, скорость и т. п.), а также способностью обнаруживать (после измерения) те или иные квантовые состояния (тенденции к определенным вероятностным проявлениям тех или иных классических наблюдаемых в последующих измерениях).

Любые классические и даже квантовые характеристики объекта возникают именно в процессе измерения и не существуют до измерения. В противном случае мы не сталкивались бы с феноменом интерференции альтернативных ветвей квантового процесса в случае отсутствия измерения, способного селектировать определенную альтернативу. Но делает ли измерение квантовый объект как таковой более определенным? Переходит ли этот объект из «неописуемого» в некоторое вполне определенное «описуемое» состояние? Внимательный анализ процедуры измерения показывает, что такого перехода из «неописуемого» состояние в «описуемое» самой квантовой системы не происходит. Определенность возникает только в нашем восприятии, но не в самом объекте.

С чисто физической точки зрения всякое измерение есть взаимодействие двух физических систем: измеряемого объекта и измерительного прибора. Предположим, что нам известно квантовое состояние измеряемого объекта до измерения (т. е. имелось предварительное измерение, которое перевело данный объект в одно из собственных состояний оператора Т, соответствующего данному типу предварительного измерения). Обозначим это исходное состояние Ф 0. Далее, предположим, что квантовый объект в состоянии Ф 0не обладает определенным значением той величины, которую мы собираемся далее измерить (т. е. оператор, соответствующий последующему измерению (обозначим его буквой F), не коммутирует с оператором Т, описывающим предварительное измерение). Тогда, для того, чтобы вычислить вероятности исходов будущего измерения, мы должны представить функцию Ф 0в виде суперпозиции Ф 0= c 1f 1+ c 2f 2+…+ c nf n(число n может быть и бесконечным), где f 1 _f n – собственные функции оператора F (т. е. такие квантовые состояния, в которых измеряемая наблюдаемая имеет вполне определенное значение), а с 1 _с nкомплексные коэффициенты, квадрат модуля которых и дает нам вероятности того или иного исхода нашего измерительного эксперимента. В результате измерения мы получаем конкретное значение исследуемой величины и таким образом измеряемая система скачкообразно переходит в одно из собственных состояний оператора F, которое соответствует результату данного конкретного измерения (обозначим это состояние f i). Это и есть процесс редукции волновой функции в процессе измерения: Ф 0скачкообразно превращается в f i. С математической точки зрения акт редукции описывается как вычеркивание из исходной суперпозиции Ф 0= c 1f 1+ c 2f 2+…+ c nf nвсех членов, кроме f iОднако, как показал еще в начале 30-х годов прошлого века И. фон Нейман [1], если измерение описать как взаимодействие двух квантовых систем: измеряемого объекта и измерительного прибора (описываемого некой многочастичной волновой функцией) – то никакой редукции исходного квантового состояния в измерительном процессе не происходит. Напротив, в результате измерения, в силу линейности уравнения Шредингера, измерительный прибор также переходит в суперпозиционное состояние – так, что члены этой суперпозиции будут соответствовать (с теми же весовыми коэффициентами) различным значениям измеряемой наблюдаемой. Вместо того, чтобы показать какое-то определенное значение наблюдаемой, прибор, как квантовый объект, как бы «расщепляется» на множество «копий» (равное числу членов исходной суперпозиции) и каждая из этих «копий» будет показывать тот или иной альтернативный исход данного измерительного эксперимента, так что в совокупности мы получим одновременно все возможные значения наблюдаемой величины в одном эксперименте, а не какое-то одно определенное значение данной наблюдаемой.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Евгений Иванов читать все книги автора по порядку

Евгений Иванов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовая философия отзывы


Отзывы читателей о книге Квантовая философия, автор: Евгений Иванов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x