Аристотель - Физика

Тут можно читать онлайн Аристотель - Физика - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Аристотель - Физика краткое содержание

Физика - описание и краткое содержание, автор Аристотель, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

«Физика» Аристотеля является одной из фундаментальных его работ и охватывает общее учение о природе. Здесь дано учение Аристотеля об общих началах бытия и формах его изменения. «Физика» является основным источником для ознакомления с естественно-научными достижениями греческой мысли, и в известном смысле она представляет собой историю античного естествознания до Аристотеля и обобщение научных достижений его эпохи. Издание этой книги дает возможность читателю непосредственно ознакомиться с постановкой основных вопросов философии естествознания (проблем изменения, бесконечности, пустоты, пространства, времени, форм движения и т. д.).

Рекомендуется не только философам, методологам и историкам науки, но и широкому кругу читателей, желающих ознакомиться с наследием великого мыслителя.

Физика - читать онлайн бесплатно полную версию (весь текст целиком)

Физика - читать книгу онлайн бесплатно, автор Аристотель
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Подобным же образом, как длина и движение, должно быть неделимым и время и слагаться из неделимых «теперь», так как если всякое [движение] делимо и тело, движущееся с равной скоростью, в меньшее [время] проходит меньший путь, то и время будет делимым. Если же время, в течение которого [тело] проходит [путь] А, будет делимо, то будет делимо и А.

ГЛАВА ВТОРАЯ

Так как всякая величина делима на величины (ибо доказано, что ничто непрерывное не может состоять из неделимых частей, а всякая величина непрерывна), то необходимо, чтобы более быстрое [тело] в равное время проходило больший [путь], а в меньшее проходило равный или в меньшее больший [путь], как и определяют некоторые [выражения] «более быстрое».

Пусть [тело] А движется быстрее, чем [тело] В. Так как, стало быть, более быстрым будет то, что раньше изменяется, то в течение того времени, когда А изменилось из Г и Д (например, за время ZH) В еще не дойдет до Д, а отстанет, так что в равное время более быстрое [тело] проходит больше. Но и в меньшее время оно также [может пройти] больше; именно, [положим, что] в то время, когда А будет у Д, более медленное [тело] В будет у Е. Так как А дошло до Д в течение всего времени ZH, у Т оно будет в меньшее время, положим ZK. Итак, [путь] ГТ, который прошло тело А, больше [пути] ГЕ, время же ZK меньше всего времени ZH, следовательно, оно в меньшее время проходит больший [путь]. Отсюда также очевидно, что и равный [путь] более быстрое [тело] проходит в меньшее время. Ибо так как оно в меньшее время проходит больше, чем более медленное, а взятое само по себе проходит больший [путь] в большее время, чем меньший, например ЛМ по сравнению с ЛЗ, то время прохождения ЛМ, а именно ПР, будет больше [времени] ПС, в которое [тело] проходит путь ЛЗ. Следовательно, если ПР время меньшее, чем ПХ, в которое более медленное [тело] проходит путь ЛЗ, то и ПC будет меньше ПХ, так как оно меньше ПР, а меньшее меньшего и само меньше Следовательно, [более быстрое тело] продвинется на равную величину в меньшее время.

Далее, если всякое [тело] должно двигаться, [проходя одинаковый путь] или в равное время [с другим], или в меньшее или в большее, и [проходящее этот путь] в большее время будет более медленным, в равное время — имеющим равную скорость, а более быстрое не будет ни тем, ни другим, то более быстрое [тело] будет двигаться, проходя тот же путь ни в равное, ни в большее время. Остается [единственная возможность: оно будет проходить этот путь] в меньшее время. Таким образом, более быстрое [тело] должно проходить равную величину в меньшее время.

Так как всякое движение происходит во времени и во всякое время может происходить движение, и так как, далее, все движущееся может двигаться быстрее и медленнее, то во всякое время будет происходить и более быстрое и более медленное движение. Если же это так, то и время должно быть непрерывным. Я разумею под непрерывным то, что делимо на всегда делимые части, при таком предположении относительно непрерывного и время должно быть непрерывным. Так как доказано, что более быстрое [тело] в меньшее время проходит равный [путь], то пусть А будет более быстрое [тело]. В — более медленное и пусть более медленное [тело] проходит величину ГД за время ZH. Стало быть, очевидно, что более быстрое [тело] пройдет ту же величину в меньшее время; пусть оно будет двигаться в течение [времени] ZТ. Обратно, если более быстрое [тело] прошло весь [путь] ГД за время ZТ, то более медленное [тело] за то же время пройдет меньший [путь]; обозначим его через ГК А если более медленное [тело] В прошло за время ZТ [путь] ГК, то более быстрое проходит его за меньшее время; следовательно, время ZТ будет опять разделено. При его разделении в том же отношении разделится и величина ГК. А если [разделится] величина, то [разделится] и время. И всегда будет происходить так, если переходить от более быстрого к более медленному и от более медленного к более быстрому, пользуясь указанным доказательством, ибо более быстрое будет делить время, а более медленное — длину. Следовательно, если такой обратный переход будет правильным и при обратном переходе всегда происходит деление, то очевидно, что всякое время будет непрерывным. Вместе с тем ясно, что и всякая величина будет непрерывной, так как время и величина делятся теми же самыми и одинаковыми делениями.

К тому же и с помощью обычных рассуждений легко уясняется, что величина непрерывна, если время непрерывно, поскольку в половинное время проходится половинный путь, и вообще в меньшее время — меньший, ибо одни и те же деления будут и для времени, и для величины. И если одно из них бесконечно, то будет [бесконечно] и другое, и в каком смысле [бесконечно] одно, в таком и другое, например, если время бесконечно в отношении концов, то и длина будет [бесконечна] в отношении концов; если [время бесконечно] в отношении делимости, то и длина в отношении делимости; если время [бесконечно] в обоих [указанных отношениях], то в обоих [будет бесконечна] и величина.

Поэтому ошибочно рассуждение Зенона, в котором предполагается, что невозможно пройти бесконечное [множество предметов] или коснуться каждого из них в конечное время. Ведь длина и время и вообще все непрерывное называются бесконечными в двояком смысле: или в отношении деления, или в отношении концов. И вот, бесконечного в количественном отношении нельзя коснуться в конечное время, а бесконечного в отношении деления — можно, так как само время бесконечно именно в таком смысле. Таким образом, бесконечное удается пройти в бесконечное, а не в конечное время и коснуться бесконечного [множества можно] бесконечным, а не конечным [множеством]. Разумеется, невозможно ни пройти бесконечное в конечное время, ни конечное в бесконечное время, но если время будет бесконечным, то и величина будет бесконечной, и если величина, то и время. Пусть АВ будет конечной величиной, Г — бесконечным временем; возьмем от него конечную часть ГД, в течение которой проходится какая-нибудь величина, положим BE. Она или без остатка уложится в величине АВ, или с остатком, или превзойдет ее; это безразлично, ибо если величина, равная BE, всегда проходится в равное время и если эта [величина] будет служить мерой целому, всякое время, в течение которого проходится целое, будет конечным; ведь оно будет делиться на равные [части], как и величина. Далее, если не всякая величина проходится в бесконечное время, но возможно пройти какую-нибудь, например BE, в конечное время и она измерит всю величину, а равная величина проходится в равное время, то, следовательно, будет конечным и время. Что величина BE проходится не в бесконечное [время], это ясно, раз берется время, ограниченное с одной стороны; ибо если часть проходится в меньшее [время], то это [время] должно быть ограниченным, так как окажется в наличии другой предел. То же самое доказательство применимо и в том случае, если длина бесконечна, а время конечно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Аристотель читать все книги автора по порядку

Аристотель - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика отзывы


Отзывы читателей о книге Физика, автор: Аристотель. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x