Д Шадрин - Логика: конспект лекций

Тут можно читать онлайн Д Шадрин - Логика: конспект лекций - бесплатно ознакомительный отрывок. Жанр: Философия, издательство Эксмо, год 2008. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Логика: конспект лекций
  • Автор:
  • Жанр:
  • Издательство:
    Эксмо
  • Год:
    2008
  • Город:
    Москва
  • ISBN:
    978-5-699-2402
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Д Шадрин - Логика: конспект лекций краткое содержание

Логика: конспект лекций - описание и краткое содержание, автор Д Шадрин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Настоящее издание представляет собой конспект лекций по дисциплине «Логика». Конспект лекций составлен в соответствии с общегосударственным стандартом по указанной дисциплине, поможет систематизировать полученные ранее знания и успешно сдать экзамен или зачет по логике.

Издание предназначено для студентов, преподавателей и аспирантов юридических вузов и факультетов.

Логика: конспект лекций - читать онлайн бесплатно ознакомительный отрывок

Логика: конспект лекций - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Д Шадрин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Они делаются из одной посылки и называются превращением, обращением и противопоставлением предикату, отдельно рассматриваются умозаключения по логическому квадрату. Выводятся такие умозаключения из категорических суждений.

Рассмотрим эти умозаключения. Превращение имеет схему:

S есть Р

S не есть не-Р.

По этой схеме видно, что посылка только одна. Это категорическое суждение. Превращение характеризуется тем, что при изменении качества посылки в процессе вывода не происходит изменения ее количества, а предикат следствия отрицает предикат посылки. Есть два способа превращения — двойное отрицание и замена отрицания в предикате отрицанием в связке. Первый случай отражен на схеме, приведенной выше. Во втором превращение отражается на схеме как S есть не-Р — S не есть Р.

В зависимости от типа суждения превращение можно выразить следующим образом.

Все S есть Р — Ни одно S не есть не-Р. Ни одно S не есть Р — Все S есть не-Р. Некоторые S есть Р — Некоторые S не есть не-Р. Некоторые S не есть Р — Некоторые S есть не-Р. Обращение— это умозаключение, в котором при перемене мест субъекта и предиката качество посылки не меняется.

То есть в процессе вывода субъект встает на место предиката, а предикат — на место субъекта. Соответственно, схему обращения можно изобразить как S есть Р — Р есть S.

Обращение бывает с ограничением и без ограничения(его еще называют простое или чистое). Это разделение основывается на количественном показателе суждения (имеется в виду равенство или неравенство объемов S и Р). Это выражается в том, изменилось ли кванторное слово или нет и распределены ли субъект и предикат. Если такое изменение происходит, то имеет место обращение с ограничением. В обратном случае можно говорить о чистом обращении. Напомним, что кванторное слово — это слово — показатель количества. Так, слова «все», «некоторые», «ни один» и другие являются кванторными словами.

Противопоставление предикатухарактеризуется тем, что связка в следствии меняется на противоположную, субъект противоречит предикату посылки, а предикат эквивалентен субъекту посылки.

Необходимо сказать, что непосредственное умозаключение с противопоставлением предикату невозможно вывести из частноутвердительных суждений.

Приведем схемы противопоставления в зависимости от типов суждений.

Некоторые S не есть Р — Некоторые не-Р есть S. Ни одно S не есть Р — Некоторые не-Р есть S. Все S есть Р — Ни одно Р не есть S.

Объединяя сказанное, можно рассматривать противопоставление предикату как продукт сразу двух непосредственных умозаключений. Первым из них производится превращение. Его результат подвергается обращению.

3. Условные и разделительные умозаключения

Говоря о дедуктивных умозаключениях, нельзя не обратить внимания на условные и разделительные умозаключения.

Условные умозаключенияназываются так потому, что в качестве посылок в них используются условные суждения (если а, то b). Условные умозаключения можно отразить в виде следующей схемы.

Если а, то b. Если b, то с. Если а, то с.

Выше указана схема умозаключений, являющихся видом условных. Для таких умозаключений характерно, что все их посылки являются условными.

Другим видом условных умозаключений являются условно-категорические суждения.Соответственно названию в этом умозаключении не обе посылки являются условными суждениями, одна из них — простое категорическое суждение.

Необходимо также упомянуть о модусах — разновидностях умозаключений. Существуют: утверждающий модус, отрицающий модус и два вероятностных модуса (первый и второй).

Утверждающий модусимеет самое широкое распространение в мышлении. Это связано с тем, что он дает достоверное заключение. Поэтому правила различных учебных дисциплин строятся в основном на основе утверждающего модуса. Можно отобразить утверждающий модус в виде схемы.

Если а, то b.

а.

b.

Приведем пример утверждающего модуса.

Если топор упадет в воду, он утонет.

Топор упал в воду.

Он утонет.

Два истинных суждения, которые являются посылками этого суждения, преобразуются в процессе вывода в истинное суждение. Отрицающий модусвыражается по следующей схеме. Если а, то b. Не-b. Не-а.

Это суждение строится на основе отрицания следствия и отрицания основания.

Умозаключения могут давать не только истинные, но и неопределенные суждения (неизвестно, истинны они или ложны).

В связи с этим следует сказать о вероятностных модусах.

Первый вероятностный модус на схеме отображается следующим образом.

Если а, то b.

b.

Вероятно, а.

Как ясно из названия, следствие, выводимое из посылок при помощи этого модуса, является вероятным.

Если дует сильный ветер, то яхту кренит набок.

Яхту кренит набок.

Вероятно, дует сильный ветер.

Как мы видим, от утверждения следствия к утверждению основания невозможно вывести истинное умозаключение.

Второй вероятностный модус в виде схемы можно изобразить так.

Если а, то b. Не-а.

Вероятно, не-b. Приведем пример.

Если человек лежит под солнцем, он загорит.

Этот человек не лежит под солнцем.

Он не загорит.

Как видно из приведенного примера, производя умозаключение от отрицания основания к отрицанию следствия, мы получим не истинное, а вероятностное следствие.

Формулы утверждающего и отрицающего модусов являются законами логики, в то время как формулы вероятностных — не являются.

Разделительные умозаключенияделятся на простые разделительные и разделительно-категорические умозаключения. В первом случае разделительными являются все посылки. Соответственно, разделительно-категорические суждения имеют в качестве одной из посылок простое категорическое суждение.

Таким образом, разделительным считается умозаключение, все или часть посылок которого являются разделительными суждениями. Структура простого разделительного умозаключения отражается следующим образом.

S есть А или В, или С.

А есть А1 или А2.

S есть А1 или А2, или В, или С.

Примером такого умозаключения является следующее.

Путь бывает прямым или окружным.

Окружный путь бывает с одной пересадкой или с несколькими пересадками.

Путь бывает прямым или с одной пересадкой, или с несколькими пересадками.

Разделительно-категорические умозаключения можно представить в виде схемы.

S есть А или В. S есть А (В). S не есть В (А). Например:

Выстрел бывает точным и неточным. Этот выстрел является точным. Этот выстрел не является неточным.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Д Шадрин читать все книги автора по порядку

Д Шадрин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Логика: конспект лекций отзывы


Отзывы читателей о книге Логика: конспект лекций, автор: Д Шадрин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x