Валентин Ирхин - Уставы небес, 16 глав о науке и вере
- Название:Уставы небес, 16 глав о науке и вере
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валентин Ирхин - Уставы небес, 16 глав о науке и вере краткое содержание
В книге проведен сравнительный анализ естественнонаучных и традиционных религиозных взглядов на проблемы, волнующие каждого мыслящего человека. Авторы широко привлекают и цитируют важнейшие религиозные, философские и эзотерические первоисточники, большинство из которых практически недоступны массовому читателю.
Благодаря широкому охвату материала и объективному изложению различных точек зрения книга будет интересна всем, кто стремится к углубленному самообразованию и духовному росту.
Уставы небес, 16 глав о науке и вере - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
- Внимание, сын мой, - шепчет рабби... - Будь осторожен, когда молишься о ниспослании Камня! Все внимание на стрелу, цель и выстрел! Как бы тебе не получить камень вместо Камня: бесцельный труд за бесцельный выстрел! Молитва может обернуться непоправимым (Г. Майринк, Ангел Западного окна).
Математическая символика более "нейтральна" и вероятно именно это позволило ей стать "общезначимой". Общераспространенность математической символики и ее максимальная "независимость от культуры" по-видимому свидетельствует, что базовые понятия (архетипы) числа, континуума и т. д. действительно являются эмоционально нейтральными. Возможно, они целиком принадлежат к высшим этажам человеческой психики (то, что по картографии сознания С. Грофа связано с трансперсональным уровнем) и в минимальной степени "зацеплены" за низшие слои (секс, агрессия...). Впрочем,
Стиль любой зарождающейся математики полностью зависит от той культуры, в котрой она возникает, от особенностей народа, над ней размышляющего (О. Шпенглер, Закат Европы. О смысле чисел).
В связи с переходом от средневековой науки, базирующейся на астрологии и алхимии, к современной математике, следует упомянуть переплетение "магического" и естественнонаучного языка в трудах врача, математика и астролога Дж. Кардано (1501-1576), описавшего свое решение кубического уравнения в сочинении Ars magna (великое искусство). Его биография напоминает авантюрный роман, а творческая деятельность полностью определялась влиянием мистического опыта. Современный английский математик Р. Пенроуз (см. список литературы) в особенности подчеркивает заслуги Кардано как одного из создателей теории вероятности, а также как математика, впервые использовавшего комплексные числа. Кроме того, начиная с Кардано можно проследить ту линию, которая в конце концов, через работы Абеля и Галуа о разрешимости алгебраических уравнений, привела к появлению современной теории групп, играющей столь большую роль в квантовой физике.
Галилей в "Диалоге о двух системах мира" (см. Избранные труды, М., 1964) объявляет тайны пифагорейских чисел баснями. Однако его кардинальная идея о тайнах природы, записанных на языке математики (см. цитату в начале главы) по происхождению несомненно восходит к пифагорейской традиции. С этого времени, математическая символика почти полностью вытесняет каббалистическую, алхимическую и другие "средневековые" символические системы. Успехи ньютоновской теории тяготения, прежде всего, вывод законов Кеплера (см. гл. 4), закрепили положение математики как "царицы наук" (известное выражение К. Гаусса). Созданный трудами И. Ньютона, Г. Лейбница, И. Барроу, Х. Гюйгенса и других ученых XVII века математический анализ оказался исключительно эффективным средством решения самых разных задач. На протяжении XVIII века огромное количество важных результатов было получено Л. Эйлером, Ж. Лагранжем, П. Лапласом и многими другими математиками, механиками и астрономами.
Несмотря на "прикладное" значение математики, в настоящее время она представляет собой самостоятельную науку с собственными объектами исследования и эстетическими критериями. Начиная с XIX века, центр тяжести в развитии математики постепенно смещается в сторону более четкого анализа используемых понятий, роста строгости и развития "культуры" математического доказательства. Этот процесс сопровождается некоторыми издержками:
Математика наших дней походит на крупный оружейный магазин мирного времени. Его витрина заполнена роскошными вещами, которые своим остроумным, искусным, пленяющим глаз исполнением восхищают знатока, а подлинные истоки и назначение этих вещей, их способность поражать врага отходят в сознании на задний план вплоть до полного забвения (Ф. Клейн, Лекции о развитии математики в XIX столетии, т.1, М., Наука, 1989, с.86).
На достаточно большом удалении от своего эмпирического источника и тем более во втором и третьем поколении, когда математическая дисциплина лишь косвенно черпает вдохновение из идей, идущих от реальности, над ней нависает смертельная опасность. Ее развитие все более и более определяется чисто эстетическими соображениями; она все более и более становится искусством для искусства... Я убежден, что "эмпирическая" подпитка была необходимым условием сохранения неувядаемой молодости и жизнеспособности математики в прошлом и что аналогичное утверждение останется в силе и в будущем (Дж. фон Нейман, цит. по: М. Клайн, Математика. Утрата определенности, с.338).
Вместе с тем, математика продолжает сохранять свою "непостижимую эффективность в естественных науках", давшую название знаменитой статье Е. Вигнера:
Математический язык удивительно хорошо приспособлен для формулировки физических законов. Это чудесный дар, которого мы не понимаем и которого не заслуживаем. Нам остается лишь благодарит за него судьбу и надеяться, что в своих будущих исследованиях мы сможем по-прежнему пользоваться им (Е. Вигнер, Этюды о симметрии, с. 197).
Рискуя несколько шокировать "сциентистски" настроенного читателя, можно тем не менее отметить очевидную аналогию между верой современного ученого в "непостижимую эффективность математики" и верой человека традиционного общества в магию чисел. Примеры такой эффективности дествительно многочисленны и впечатляющи. Можно указать, например, на основное уравнение, описывающее свойства электрона - уравнение Дирака. Оно было установлено Дираком в 1927 г. из соображений "математического изящества" и не только прекрасно описало все известные к тому времени свойства электрона, но и привело к предсказанию существования античастицы электрона - позитрона, впоследствии подтвержденному экспериментально. Еще более ярким примером является общая теория относительности (современная теория тяготения), созданная Эйнштейном в 1915 г. как достаточно формальная математическая конструкция почти без всякой экспериментальной основы и блестяще подтвержденная всеми последующими экспериментами и астрономическими наблюдениями. Однако, если мы захотим понять эти успехи, это может оказаться делом не более простым, чем объяснить, каким образом пересчет девушек (см. выше цитату из Фрэзера) может повредить их здоровью. "Самое непостижимое в мире - то, что он постижим" (А. Эйнштейн), причем зачастую - постижим на математическом языке. Следующий отрывок дает описание "мистического опыта", связанного с чистой математикой.
В математике, дополненной философией и психологией, я нашел то, что обычно дает человеку религия. Я осознал в этом присутствие реальности в форме необычайной чистоты, и предел внутреннего проникновения, которого я тогда достиг, хотя мне и недоставало соответствующего понимания и различения, не был превзойден с тех пор никогда, вплоть до седьмого числа прошлого месяца... То, чего я достиг благодаря математике на языке символов - а это был редкий уровень сознания, - должна была дополнить философия, так чтобы это могло стать ясным для понимания. Философия добавила способность размышления и сосредоточения к чистому свету математики (Ф. Меррелл-Вольф, Пути в иные измерения, с.145-146).
Читать дальшеИнтервал:
Закладка: