Г Гутнер - Онтология математического дискурса

Тут можно читать онлайн Г Гутнер - Онтология математического дискурса - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Онтология математического дискурса
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.6/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Г Гутнер - Онтология математического дискурса краткое содержание

Онтология математического дискурса - описание и краткое содержание, автор Г Гутнер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Онтология математического дискурса - читать онлайн бесплатно полную версию (весь текст целиком)

Онтология математического дискурса - читать книгу онлайн бесплатно, автор Г Гутнер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Брауэровская математика (как и вся математика интуиционистской школы) чаще всего рассматривается в контексте кризиса оснований, вызванного обнаружением известных парадоксов и антиномий. Поэтому в требовании конструктивности математических объектов видят, главным образом, попытку устранить из математики самую возможность противоречия. Однако сам Брауэр, очевидно, идет гораздо дальше этой попытки. В целом ряде его работ обнаруживается не столько математический, сколько чисто философский интерес автора. Во всяком случае в тех статьях, на которые мы намерены в дальнейшем опираться, Брауэр озабочен не обоснованием корректности математических процедур, а исследованием когнитивной деятельности мысли как таковой. При этом он имеет явное намерение основать принцип существования в математике на исходных структурах мысли. Им предпринимается попытка трансцендентального анализа, призванного обосновать основные математические понятия как производные от форм интеллектуальной деятельности.

Брауэр представляет когнитивную активность человека в виде последовательности ясно отличимых друг от друга восприятий. В работе "Об основаниях математики" он писал так: "Человек наблюдает в мире последовательности событий, причинные цепи, разворачиваемые во времени. Основным феноменом этого наблюдения является сама интуиция времени, в которой происходит повторение восприятий или действий. Эта интуиция обнаруживается как последовательность моментов, разбивающих жизнь на последовательность вещей, качественно отличимых друг от друга" ([65], c. 99). Не само по себе восприятие определяет структуру мысли. Брауэр выделяет нечто, называемое "элементарный акт мысли", который описывает как "разделение моментов жизни на качественно различные части, которые, будучи разделены лишь временем, могут быть снова объединены". (См. примечание 2) Из этого, не очень ясного высказывания можно заключить, что акт мысли не есть простое действие или восприятие, связанное с определенным моментом времени. Элементарный акт мысли состоит именно в различении моментов. Иными словами элементарный акт мысли производит выделение некоторых отличных друг от друга индивидов, причем отличие их определяется разделяющими их временными промежутками. Производится, таким образом, организация времени, в котором, как в некоторой аморфной среде, выделяются фиксированные дискретные моменты. Это значит, что деятельность мысли определена двумя основными интуициями: дискретная последовательность и непрерывная среда (линейный континуум).

Естественным примером такой расчленяющей деятельности является деление отрезка прямой линии при нанесении на него последовательности точек. Само построение отрезка, отличимого от других отрезков, его выделение в качестве отдельного восприятия можно считать элементарным актом мысли. Но серия других элементарных актов, состоящих в делении построенного отрезка, позволяет различать в его пределах другие восприятия, части этого отрезка. Сами восприятия, (См. примечание 3) будучи ограничены какими-то границами (концы отрезка) могут быть безгранично делимы. Мы полагаем, что именно это имел в виду Брауэр, когда писал: "Возможность мысленного объединения нескольких единиц, связанных некоторым промежутком, никогда не исчерпывается вставлением новых единиц" ([55], c. 245). В результате процедуры деления отрезка мы структурируем ранее нерасчлененное единство и создаем определенную дискретную последовательность в пределах непрерывной среды. Таким образом мы все больше определяем эту самую среду, устанавливая отношения ее частей.

Две основные интуиции мысли находятся, следовательно, в состоянии постоянного взаимного определения и дополнения. Дискретная последовательность моментов структурирует аморфную среду, нечто постоянно недоопределенное, остающееся между названными моментами. (См. примечание 4) Приведенный нами геометрический пример является парадигмальным для описания любой когнитивной деятельности. Последняя, как видно, состоит в различении моментов восприятий в непрерывной временной среде и расчленении и уточнении самих восприятий.

Математика представляет собой наиболее чистое и, по-видимому, наиболее развернутое выражение такой деятельности. Френкель и Бар-Хиллел приводят следующее высказывание Брауэра: "Изначальная интуиция математики и всякой интеллектуальной деятельности представляет собой основу всех наблюдений за какими-бы то ни было изменениями, поскольку при этих изменениях игнорируются все качественные свойства" ([55], c. 240; курсив наш - Г.Г.).

Отвлечение от всякого чувственного содержания дискретной последовательности различающих актов мысли и создает представление целого числа, точнее, последовательности целых чисел, счета. При этом континуум, который Брауэр также называет основной интуицией, оказывается как бы в подчиненном положении. Он должен быть определен в ходе развертывания дискретной (числовой) последовательности.

Числовая последовательность оказывается для Брауэра основным математическим объектом. Конструирование, которое, согласно замечанию Поппера, является единственным онтологически значимым для математики процессом, следует рассматривать именно как конструирование числовых последовательностей. Впрочем, такое конструирование часто является не самоцелью, а скорее способом определения непрерывного протяженного предмета. Последний, конечно, не есть реальность, данная до всякого построения. Он - среда, а не вещь. Существует то, что происходит в этой среде, точнее, что создается субъектом, действующим в пределах, заданных этой средой. Создается же им дискретная числовая последовательность. Основополагающим отношением для любой последовательности является отношение 'до-после' (отношение порядка). Это отражает ведущую роль интуиции времени в математике. Структура различия, вносимая субъектом в среду, является временной структурой. Основным различением, существующим между создаваемыми элементами, является различение во времени. Определенность предмета возникает, однако еще при одном условии, которое и делает, на наш взгляд, окончательно ясной роль конструктивности. Необходимо принять во внимание еще одну важную характеристику когнитивной деятельности, на которую указывает Брауэр. "Человеческое поведение включает попытку удерживать достаточно длинную цепь 'вещей' с тем, чтобы иметь возможность перейти мысленно от последней к более ранней. Результатом такого действия является обнаружения правила, закона, формирующего последовательность" ([65], с. 99).

Коль скоро когнитивная деятельность подразумевает удержание в мысли некоторого единства, чего-то целого, явленного в последовательных восприятиях (или действиях), то математика должна, выражая эту способность, конструировать единый предмет из многих элементов последовательности. "Человеческое понимание основано на конструировании обычных математических систем так, что каждый индивидуальный элемент жизни связан с соответствующим элементом системы" (Там же). Конструкция, таким образом, оказывается необходима потому, что создает единство многих конструктивных элементов (различенных моментов или восприятий). Конструирование, следовательно, лежит в основе человеческого понимания всякого предмета вообще. Благодаря созданной конструкции, предмет предстает человеку как существующий. Особенно это важно коль скоро речь идет о протяженном предмете, представление которого связано с длением, с непрерывно длящимся восприятием. Смысл конструирования тогда состоит в создании целостной структуры различимых элементов в текучей и неопределенной среде.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Г Гутнер читать все книги автора по порядку

Г Гутнер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Онтология математического дискурса отзывы


Отзывы читателей о книге Онтология математического дискурса, автор: Г Гутнер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x