Карт - Размышления о Декарте
- Название:Размышления о Декарте
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карт - Размышления о Декарте краткое содержание
Размышления о Декарте - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Теперь для понимания всей проблемы когито или последней очевидности и основания нам понадобится следующий декартовский шаг. Сначала напомним себе, что если есть мыслительные акты, выполненные во всей их полноте (а бытийная и понимательная тавтология - именно такая полнота, она замыкает все точки и единообразно их определяет), и если, во-вторых, они характеризуются еще и тем, что в них все - в настоящем, и мы не можем ввести в эту полноту никакой идеи смены и последовательности, то мы должны думать, что имеем здесь какую-то другую связь для всего этого многообразия. То есть перед нами интервал (о котором я уже говорил), как бы растянутый в какую-то вневременную, "пространственную" синхронность многого (и из прошлого, и из будущего), как раз и накладывающий искомое ограничение на прогресс в бесконечность, дающий какую-то связность. Представьте себе, что у вас малюсенькое окошечко, а вы его раздвинули и смотрите туда, в образовавшийся проем - и перед вами целая громадная область, в которой в "вечном настоящем" взаимодействуют, перекликаются и корреспондируют массы связей, предметов, моментов и состояний. Так вот, именно это, согласно Декарту, и не может склониться или отклониться, это нельзя сбить потоком. Прямо-таки какое-то динамическое бессмертие, поддерживающее нас большой силой; как бы скрытая, невидимая catena (связь, сцепление) всех вещей! Эта catena (называемая еще "естественным светом") и снилась Декарту в юности, когда ему пригрезились очертания "изумительной науки", о которой он вспоминает в позднем диалоге "Разыскание истины".
То есть, на самом деле, обсуждая проблему, может ли атеист быть математиком, не просто формально, по профессии, а математиком, уверенным в очевидности и безошибочности своих рассуждений, Декарт имеет в виду философское воссоздание каждый раз мыслительного акта в полном его виде, со всеми его предпосылками, допущениями. Что можно рассуждать, забыв все начала, на которых оно построено. Потому что, будучи построено на одном из каких-то начал, рассуждение затем обретает свою автономию, у него появляется свой аппарат или, скажем так, другой слой мыслительной процедуры, когда мы можем уже формально и точно что-то вычислять, не восстанавливая всякий раз те основания, с которыми связана процедура. В этом смысле мы можем о них забыть. Представьте себе математика, который, решая задачу, каждый раз восстанавливал бы основания самого математического рассуждения со всеми его предпосылками и допущениями! Невозможно представить. Значит, их можно забыть. И в той мере, в какой об этом можно не помнить или забыть, нет и не может быть полной уверенности в действии самого математического формализма. Восстанови в полном виде - тогда можешь быть уверен. И уверенность эта предполагает актуальное существование всех причин, почему нужно думать именно это, а не что-нибудь другое. Это мистическая, сложная фраза. Я сказал "мистическая", потому что подумал: дай Бог, чтобы это было так. Она просто сложная.
Обратим внимание на следующую особенность. Я частично уже касался ее в связи с характеристикой уравнений "мысль-бытие". Вернемся к рисунку, изображающему "Иванова". И к прямой линии. Ведь речь шла в этом случае не о знаках или рисунках-именах, рисунках-названиях, изображениях акта мысли, когда знаки дублируются в других целях. Здесь материальные штрихи и черточки (или в случае слова - звуки) или их следы в чувствующем устройстве еще не говорят однозначно о том, что мы видим. Вообще внятность видимого вовсе не сама собой разумеется. Декарт весьма тонко избегает призрачного представления "третьего глаза", когда, например, есть материальный след предмета А, но то, чем мы узнаем (видим) именно А, причиной этого не может быть сам след А, а есть "идея" А. Иными словами, мы видим или узнаем путем смыкания "идей" с видимым (или слышимым) в материальных знаках, - "идей", являющихся образованиями, которые я назвал полными предметами (или полностью определенными) и притом существующими в особом режиме "вечного настоящего", а не в последовательности. И у них нет других оснований, кроме как оснований самих себя, которые и есть причина узнавания "Иванова", прямой линии, треугольника и o.a. Как и в случае проявлений добра, например, - все это предметы, обладающие одинаковыми свойствами в смысле оснований. Конечно, мир рисунка (а это именно мир) не такой сложный, как мир нравственности. Утверждение, что добро не имеет мирских оснований, кажется более сложным, чем то, что узнавание Иванова не имеет - и я скажу теперь - мирских оснований, а есть некое самоузнавание себя чем-то. Нечто себя узнает, является основанием самого себя, причиной самого себя. Добро, как предмет наших стремлений, уже есть. И только потому, что оно уже есть, оно может быть предметом наших стремлений; проявлением добра является мое стремление к добру. Другой причины у него нет: нельзя ни полезностью обосновать добро, скажем, во имя совершенствования общества, ни сенсуально-гедонистической природой человека, составив таблицу удовольствий-неудовольствий и подсчитав, что быть добрым выгоднее, потому что больше . удовольствия и o.a. Вы легко можете убедиться, что это совсем не так. Какая-то причина должна быть! Хотя, назвав ее причиной себя самой, я еще не ответил, разумеется, на вопрос, поскольку это же во мне срабатывает узнавание. Допустим, я могу сказать, что бытием называется то. что является причиной самого себя. Но какое бытие? Или - Бог есть причина самого себя. Но это не полный еще, не окончательный ответ на наш вопрос, а лишь движение к нему указанием на определенные свойства вот этих тавтологий или полностью определенных предметов, существующих 6 режиме настоящего и даже в области математики обеспечивающих возможную уверенность математика в истинности и безошибочности своих доказательств.
Продолжая недоуменный вопрос, что должна все же быть какая-то причина, я добавлю теперь к "Иванову", к рассуждению о треугольниках или полных предметах еще и математика, чтобы разделаться наконец с вопросом о дерзком ответе Декарта, что атеист или не сознающий себя Божьим созданием математик не может быть до конца уверен в своих доказательствах и рассуждениях.
Я говорил: счет или измерение. Вдумаемся, ведь сказать, что это 8, т.е. подсчитать нечто и сказать, что этого нечто 8, и само число 8 - разные вещи. Поскольку счет явно предполагает движение по точкам и возможность остановки. А остановка означает привилегирование какой-то точки. Вы слышали, конечно, об античной дилемме: догонит ли Ахиллес черепаху или не догонит? В чем здесь дело? В том, что в этой погоне за черепахой есть выделенная точка, привилегированная. И антиномия строится на том, что, оказывается, внутри такой точки не содержится никакого признака, который позволил бы нам привилегировать точку, в которой Ахиллес догонит черепаху. И поэтому перед этой точкой все время будет повторяться ситуация преддогоняния. Негде остановиться! Повторяю, а здесь (в случае "восьмерки") имеется остановка, выбор. Скажем, есть исчисление, в нем энное число истинных формул, и это исчисление, математическое или логическое, не содержит формулы выбора истинных формул из их общего числа. То есть оно задает энное число истинных формул, но нет формулы выбора истинных формул. Или в числе истинных формул нет истинной формулы выбора. А почему выбирают то или другое? Почему какое-то математическое построение обладает большей убедительностью (а убедительность есть нечто иное, чем доказанность, доказательность) по сравнению с другим математическим построением? Какова причина этого? Почему я узнал Иванова? Конечно же, произошел синтез всех черточек, чтобы получился Иванов. Но, значит, какой-то синтез сознательной жизни произошел и у математика? Почему он остановился и выбрал эту формулу? Потому что чего-то восемь не то же самое, что знать число восемь. Разные вещи. Трудно уловить то, что я говорю, поскольку относительно такого рода вещей нет теории. Не в том смысле, что она может быть, а просто ее нет. Поэтому и разговор мой обращен скорее к вашей и моей интуиции - из потребности понять это.
Читать дальшеИнтервал:
Закладка: