Борис Кузнецов - Путешествие через эпохи

Тут можно читать онлайн Борис Кузнецов - Путешествие через эпохи - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Молодая гвардия, год 1975. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Путешествие через эпохи
  • Автор:
  • Жанр:
  • Издательство:
    Молодая гвардия
  • Год:
    1975
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.11/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Борис Кузнецов - Путешествие через эпохи краткое содержание

Путешествие через эпохи - описание и краткое содержание, автор Борис Кузнецов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Путешествуя с графом Калиостро на машине времени, читатель встречается с великими мыслителями разных времен и эпох. Он как бы слышит их перекличку и видит живую связь времен и поколений, преемственность в развитии культуры, ее «инварианты» и специфику сменявших одна другую эпох.

Путешествие через эпохи - читать онлайн бесплатно полную версию (весь текст целиком)

Путешествие через эпохи - читать книгу онлайн бесплатно, автор Борис Кузнецов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 1854 году я приехал в Казань и встретился с Н. И. Лобачевским [175] Лобачевский Н. И. (1792–1856), один из величайших математиков XIX века, профессор Казанского университета, создатель неэвклидовой геометрии, в которой сумма углов треугольника меньше двух прямых углов, через точку, взятую вне прямой, можно провести бесконечное число прямых, параллельных данной, и т. д. .

Эти годы были очень тяжелыми для создателя неэвклидовой геометрии. Он ослеп, его отстранили от университета, его идеи вызывали насмешки.

Я был представлен Лобачевскому в университетском актовом зале. Его ввела жена, он тяжело опирался на палку, на губах его блуждала неопределенная, несколько виноватая улыбка, он с трудом поднимал седую голову и как бы стыдился своей немощи. Когда я сказал Лобачевскому, что знаю о неэвклидовой геометрии и думаю, что ей принадлежит будущее, великий мыслитель сразу преобразился. Он потянулся ко мне, застывшая неуверенная улыбка уступила место глубокому удовлетворению. Лобачевский стал как-то выше, черты лица его разгладились, стали четкими, только незрячие глаза оставались такими же тусклыми. Лобачевский пригласил меня к себе, и на следующий день мы сидели в саду его дома.

В это время одинокий мыслитель много думал о физических эквивалентах неэвклидовой геометрии. Он говорил о возможном неэвклидовом характере космоса и о влиянии сил, действующих в микромире.

Постулат параллельных, равенство суммы двух углов в треугольнике двум прямым углам может не быть неизменным при количественном преобразовании картины мира, при переходе от мельчайших частиц к обычным масштабам и к звездному небу. Что же является инвариантом геометрического постижения мира? «Это, — говорил Лобачевский, — сама зависимость геометрических аксиом от физической природы и масштабов рассматриваемых явлений. Мы можем, зная устройство мира, определять, в каком случае какая геометрия является наиболее точным геометрическим описанием действительности. Если так, то инвариантом познания становятся уже не геометрические соотношения, а их связь с масштабами и структурой физического мира. Поэтому они являются уже не инвариантами геометрии, а более общими физико-геометрическими инвариантами познания мира».

В целом беседа с Лобачевским производила двойственное впечатление. Прежде всего впечатление невероятной мощи научного прогноза. Мыслитель XIX века говорил о проблемах науки ХХ века, которая, обретая связь с «вопрошающей» тенденцией прошлого, получала в его устах еще большее «внутреннее совершенство». Это была живая и глубоко оптимистическая демонстрация непрерывности и преемственности духовной эволюции человечества. Демонстрация действительной реальности машины времени, действительной переклички эпох. Но впечатление было и трагическим. Лобачевский подходил к новым применениям своей геометрии, к новым представлениям о пространстве, о познании, о реальности, но он был измучен одиночеством и болезнями. Мне хотелось что-нибудь сделать для моего великого собеседника, и я сделал, что мог: рассказал ему о развитии физической геометрии, о теории относительности, о неэвклидовости четырехмерного пространства-времени. Рассказал в виде предположения о дальнейшем развитии науки. Впрочем, Лобачевского не интересовали истоки моих представлений о судьбе неэвклидовой геометрии. Он видел в моем рассказе неоднозначный прогноз, но вероятный. В данном случае, как и во многих других, прогноз будущего меняет оценку настоящего. Неэвклидова геометрия становится геометрией мира, геометрией вселенной. Мысли Лобачевского о физических эквивалентах неэвклидовой геометрии приобретали для него то, что Эйнштейн назвал впоследствии «внешним оправданием». Правда, для Лобачевского это оправдание казалось еще только предположением. Но такая принципиальная возможность была для него большой радостью. Он ощущал возможное в будущем торжество физической геометрии как торжество своего научного подвига и как подтверждение своих исходных идей, выходивших за рамки геометрии.

Физический смысл неэвклидовой геометрии при такой ее связи с физикой представляет собой нечто противоположное кантианскому априорно-субъективному пониманию пространства-времени. У Канта инвариантом познания оказывается сознание человека. У Лобачевского, напротив, инварианты познания становятся отображениями инвариантов бытия.

Неклассическая наука весьма отчетливо показала физико-геометрический характер перехода от обычных масштабов к космическим. Мысль Лобачевского о новой геометрии как более точном отображении микромира реализовалась в неклассической науке более сложным образом. Здесь преобразуются не только геометрические аксиомы, но и логические нормы.

Что же остается неизменным, тождественным себе? Каковы инварианты познания, недоступные преобразующему воздействию исторически развивающейся науки, в том числе неклассической науки ХХ века? Этот вопрос я решил задать Эйнштейну и задал его в марте 1955 года, за три недели до смерти ученого. Мы сидели в кабинете Эйнштейна перед раскрытым окном, глядя на едва распустившиеся листья весеннего сада.

— Я думаю, — ответил Эйнштейн, — такие инварианты существуют, и насколько можно предвидеть развитие науки, они сохранятся. Это представления о связи вселенной и элементарных частиц вещества. Представления о вселенной и представления об элементарных частицах меняются, но их связь всегда остается основой науки. Не всегда явной. Долго думали, что прогресс науки состоит в поисках совсем простых элементов бытия. Но каждый шаг в этих поисках, как правило, менял представление о целом, а сейчас будущее, по-видимому, принадлежит тому направлению, которое объясняет структуру космоса событиями в мире элементарных частиц, а признаки элементарных частиц объясняет как результат их взаимодействия с космосом. Вы помните, мы говорили об этом лет десять назад, и я писал нечто подобное в своей автобиографии 1949 года — о существенном недостатке теории относительности: она исходит из некоторых особенностей поведения часов и линеек, то есть из допущения свойств пространства и времени, не давая им атомистического объяснения. Я надеялся, что этот недостаток будет преодолен в единой теории поля. Наблюдая современные трудности теории элементарных частиц, я начинаю думать, что эти трудности, в свою очередь, будут преодолены интервенцией представлений о пространстве и времени в целом, их интервенцией в картину микромира.

— Интервенция представлений о бесконечном пространстве и времени?

— Да. Как мне кажется. К счастью, современное понятие бесконечности ушло очень далеко от непредставимого и противоречивого, традиционного понятия бесконечности. В электродинамике условия бесконечности — это условия на расстоянии нескольких метров, а, может быть, и сантиметров. Для дифференциального исчисления любая конечная величина бесконечна. В данном случае бесконечный космос, описывается ли он открытой или закрытой моделью, будет ли он конечным или бесконечным по своему радиусу и объему, все равно в отношении элементарных частиц он представляется бесконечным. Условия на его границах можно рассматривать как условия на бесконечности. Соответственно и элементарные частицы, независимо от их радиуса, играют роль бесконечно малых в макроскопических представлениях и даже в атомной физике.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Борис Кузнецов читать все книги автора по порядку

Борис Кузнецов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Путешествие через эпохи отзывы


Отзывы читателей о книге Путешествие через эпохи, автор: Борис Кузнецов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x